應用實驗設計於咖啡沖泡後口味之探討

Applying Design Experimental to discussion of the taste after filter coffee

游雅雯 研究生 雲林科技大學工業工程與管理系 <u>Email:g9621706@yuntech.edu.tw</u> 廖益萱 研究生 雲林科技大學工業工程與管理系 <u>Email:g9621706@yuntech.edu.tw</u>

鄭博文 教授 雲林科技大學工業工程與管理系 Email:chengbw@yuntech.edu.tw

摘要

咖啡已是世界流行的趨勢,隨著台灣人休閒品味的改變,咖啡需求量日漸大增;根據台灣區果蔬汁公會與汽水公會的統計,在一年近 400 億元的飲料市場中,咖啡是過去十年來銷售量唯一以超過兩位數字成長的飲料,顯示國人對咖啡的接受程度不斷提昇。咖啡的煮法有很多,而沖泡咖啡是一個既省錢又方便,可以很簡易的在家自行 DIY 沖泡一杯好喝的咖啡,因此本研究將以實驗設計的方式來進行實驗,針對沖泡咖啡口感因子來進行深入探討,以期讓咖啡喜好者,進而從中找出沖泡好喝咖啡之最佳因素組合。

本研究在沖泡咖啡過程中調控水的溫度、種類,沖泡時間,再經由受測者以杯測法填寫感官評鑑法的評比得到苦味、酸味、甘味、澀味、香氣、濃度和整體口感結果。分別針對各種結果作變異數分析 (α = 0.05)。結果:(1)在溫度調控下,苦味有顯著差異。溫度在 100° C 時會比 90° C 好。(2)在水的種類、時間調控下,酸味有顯著的差異。沖泡時間在 90分鐘時會比 75分鐘好。(3)在水的種類調控下,世味有顯著差異。水的種類在 80 會比自來水好;80 會比礦泉水好。(4)在時間調控下,澀味有顯著差異。沖泡時間在 90分鐘時會比 75分鐘好。(5)在水的種類、溫度調控下,整體口感有顯著的差異。水的種類在 80 會比礦泉水好;自來水會比礦泉水好。因此咖啡的沖泡因子與苦味、酸味、甘味、澀味和整體口感有關聯。

關鍵字:沖泡咖啡、實驗設計、杯測法、感官評鑑法

1. 前言

咖啡已是世界流行的趨勢,隨著台灣人休閒品味的改變,咖啡需求量大增,咖啡已成為台灣的新興產業,漸漸在市場上嶄露頭角,沈盈貝[12];根據台灣區果蔬汁公會與汽水公會的統計,在一年近400億元的飲料市場中,咖啡是過去十年來銷售量唯一以超過兩位數字成長的飲料,顯示國人對咖啡的接受程度不斷提昇,楊昭景[2]。現今台灣每年每人對現煮咖啡的消費量由60杯增加為100杯,台灣連鎖加盟協會(2003)指出日本人為200多杯,歐洲和美國300多杯,北歐芬蘭、挪威達到400多杯,突顯台灣現煮咖啡市場拓展潛力仍大;根據業者保守估計,以台灣2100萬人口平均一年每人在咖啡店喝10杯咖啡,一杯花費50元來計算,咖啡店市場一年就有100億以上的營業規模,這也證明國內企業看好咖啡市場並非沒有道理[9]。咖啡人口日益增多,根據2007年市場統計,台灣民眾飲用咖啡習慣已漸漸偏好現煮咖啡。咖啡愛好者都知道,選購好的咖啡僅是製作好咖啡的第一步,正確的貯存、研磨、沖煮時水的溫度,以及與咖啡粉接觸的時間均是影響咖啡品質的重要因素[11]。咖啡的煮法有很多,而沖泡咖啡是一個既省錢又方便,可以很簡易的在家自行DIY沖泡一杯好喝的咖啡,因此本研究將以實驗設計的方式來進行實驗,針對沖泡咖啡口感因子來進行深入探討。

2. 文獻探討

咖啡豆的種類和成分, 見表 1、表 2。 [3]

- 1. 脂肪: 其中最主要的是酸性脂肪及揮發性脂肪,其中酸性脂肪中含有酸,其強弱會因咖啡種類不同而異,而揮發性脂肪是咖啡香氣主要來源,它是一種會散發出約四十種芳香物質。
- 2. 糖:咖啡生豆所含的糖分約 8%,經過烘焙後大部分糖分會轉化成焦糖,使咖啡形成褐色,並與丹 寧酸互相結合產生甜味。
- 3. 蛋白質:卡路里的主要來源,所佔比例並不高。咖啡粉的蛋白質在煮咖啡時,多半不會溶出來,

所以攝取到的有限。

4. 咖啡因:有特別強烈的苦味,刺激中樞神經系統、心臟和呼吸系統。適量的咖啡因亦可減輕肌肉疲勞,促進消化液分泌。由於它會促進腎臟機能,有利尿作用,幫助體內將多餘的鈉離子排出體外。但攝取過多會導致咖啡因中毒。

5. 丹寧酸:煮沸後的丹寧酸會分解成焦梧酸,所以沖泡過久的咖啡味道會變差。

6. 礦物質:含有少量石灰、鐵質、磷、碳酸鈉等。

7. 粗纖維:生豆的纖維烘焙後會炭化,與焦糖互相結合便形成咖啡的色調

表 1 咖啡豆的種類

					• /	ロノイエング	•	
名稱	產地	香	甘	酸	醇	苦	備註	
藍山	牙買加	0	0		0		最高級品	
聖多斯	巴西	Δ	Δ		Δ		宜調配用] (引
曼巴		0	0	Δ		0		
巴西	聖保羅		Δ	Δ		Δ		
摩卡	衣索匹亞	0	Δ	Δ	0		最標準品質	
哥倫比亞	哥倫比亞	0	Δ	Δ	0		最標準品質]
瓜地馬拉	瓜地馬拉	Δ	Δ	Δ	Δ		高級品質	
牙買加	牙買加	Δ	Δ	Δ	0		品質優良	
曼特寧	蘇門答臘	0			Δ	Δ	風味特殊	
爪哇	爪哇島					0	宜調配用	
克里曼加羅	坦桑尼亞	0		0	Δ	Δ	酸性特佳	
哥斯大黎加	哥斯大黎加			Δ	Δ		高級品質	

弱

資料來源: 凱蒂咖啡館

表 2 咖啡豆的成份解析

	水分	脂肪	糖分	蛋白質	咖啡因	丹寧酸	礦物質	粗纖維
生豆	11.3	11.7	8.0	11.8	1.3	6.0	4.2	28.6
熟豆	2.5	13.2	1.8	12.8	1.3	4.0	5.2	29.6

資料來源: 台灣果汁咖啡網

咖啡沖泡方式[8]

(1) 濾紙式(Paper Filter)

採用輕巧簡單的沖泡器具、高質量過濾紙 (須先折邊線) 與尖嘴水壺,控制水溫、水量、咖啡粉。即可沖泡出香醇可口的咖啡,非常適合家常或辦公室中使用,方便快速,是時下相當流行的咖啡沖泡方式。

材料與器具:尖嘴水壺、咖啡粉、濾紙、濾杯、咖啡壺(茶壺)、咖啡匙。

製作:濾紙兩邊先折線,使放入後可貼緊濾杯。將咖啡粉放進濾紙中,並在正中央挖一個小凹洞。先以小水柱慢慢旋轉倒入90℃熱水於咖啡粉上,使之浸濕發泡。再以95℃熱水持續繞圓圈將熱水慢慢倒入。最後再以85℃熱水對準正中央慢慢拉高倒入。

(2) 濾袋式(Drip)

可預先準備多人份的熱咖啡供應,沖泡時也必須注意咖啡粉粗細、水溫、水量與沖泡方法等技巧,最好用尖嘴水壺,效果較佳,同時等咖啡液滴漏完成後,必須再回溫至80~90℃,才能達到最佳飲用風味。

材料與器具:咖啡粉、小沖袋(濾袋)、小沖架、水壺、咖啡匙、尖嘴水壺。

製作:將咖啡粉倒入沖袋中,先轉拍底部使粉平均,再於上面正中央挖一個小凹洞,以90℃熱水繞圓圈倒在咖啡粉上,再以95℃熱水繞小圈旋轉將水倒入最後以85℃熱水對準正中心由低慢慢拉高往下倒入即告完成。

(3) 虹吸(蒸餾)式(Siphon)

它是由二個球型玻璃杯上下排列,廣泛使用於家庭、旅館、咖啡店中,一邊欣賞沖泡過程一邊享受咖

啡的樂趣此乃最大的魅力。

特色:香醇可口,但酸味嫌重了些。虹吸式煮法較使用於單品咖啡。

做法:(二人份咖啡)將開水 240c.c.倒入球形燒杯內,並將外側的水滴擦拭乾淨,以酒精燈加熱。 在形成漏斗狀的提煉杯底部裝上絨面的過濾布,將彈簧拉至虹吸管子前端使其固定,並將 20 克咖啡粉(依個人口味濃淡可斟量增減)置於提煉杯內。 底部的開水完全沸騰後,將提煉杯轉進燒杯內固定。開水上升至提煉杯時,以竹杓子將咖啡粉均勻攪拌,使咖啡粉的成份完全釋出來。注意避免攪拌過度造成混濁。經過約二十至三十秒後熄火,咖啡液會由濾布濾過而流到燒杯。等提煉杯的咖啡流下後,便可以取下。輕輕搖晃燒杯使咖啡液均勻,八十七度左右是理想的飲用溫度,即可倒入已加溫的咖啡杯內享用。

(4) 電動咖啡壺(Coffee Maker)

使用方便,完全自動的煮法,電動咖啡機所煮出的咖啡味道較淡薄,適用大杯子來喝。

做法:五人份咖啡,將 600c.c.的水倒入咖啡機水箱。過濾器內裝一層濾紙,均勻灑入 50 克咖啡粉。裝好咖啡壺打開電源,水加溫至 92~93 度時,會經由自動咖啡器內的導管流下,由過濾器滴出咖啡。 (5) 意大利式

利用高壓蒸氣原理,將煮沸的熱水經由導管通過咖啡粉(細研磨),由下而上或由上而下,沖煮出香濃、醇苦的意大利咖啡,此法由意大利引進,是時下相當流行的沖煮法。適合口味濃重者,必須注意咖啡豆的調配品質,咖啡粉研磨要細,且應掌握沖煮時間與水量。

材料與器具:意大利咖啡粉、意大利咖啡壺(摩卡壺)、壺架、酒精燈(或瓦斯爐)、濾紙、上壓蓋、咖啡匙、製作:先將熱水倒入咖啡壺底座之水槽中,再將咖啡槽座放進底壺,放入研細的意大利咖啡粉,在咖啡粉上加一層濾紙,使粉不至於衝上去,放入上壓蓋,將咖啡粉壓緊,將上層壺身與下層擰緊,開大火煮至上層壺身冒出蒸氣,咖啡液流進壺身中即告完成,此時可以熄火,將咖啡倒進杯中即可。

3. 研究方法與步驟

本研究以實驗設計法來進行實驗,選擇3因子3水準來評估最佳組合條件,並重複兩次;因此本實驗應進行54(3³*2)次試驗;本研究方法及步驟敍述如下。

3.1. 研究方法

本組以表 3 要因圖及上網蒐集咖啡相關資訊、訪談,選出 3 個實驗因子,每個因子分別含有 3 個水準。不同種類的咖啡沖泡各有不同,根據專家訪談一般溫度的掌握大約為 100~90℃,為了避免實驗結果因子不顯著,故以間隔 5 度做為水準的設定。而咖啡的沖泡時間為 1 分鐘至 1 分半鐘,因此設定水準為 60 秒、75 秒及 90 秒。實驗因子及水準符號表示如下:

 Factor
 Level 1
 Level 2
 Level 3

 A 水的種類 礦泉水 自來水 電解質水

 B 水的温度 100度
 95度
 90度

 C 沖泡時間 60秒
 75秒
 90秒

表 3 因子與水準表

3.2. 研究流程

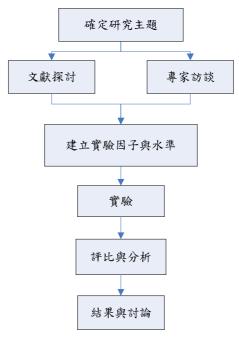


圖1 研究流程圖

3.2. 研究步驟

實驗設備:

- 1. 濾紙
- 2. 温度計
- 3. 過濾器
- 4. 陶瓷杯
- 5. 新鮮咖啡豆(曼巴)
- 6. 沖泡壺
- 7. 小湯匙
- 8. 電磁爐
- 9. 水的種類

沖泡流程圖如圖2所示。

- 1. 選擇水的種類
- 2. 將新鮮咖啡粉放入濾紙中,先轉拍底部使 粉平均,再於上面正中央挖一個小凹洞
- 3. 以温度計控制水温
- 4. 將熱水徐徐注入咖啡中央後,以螺旋狀往 外繞;再由周圍回到中央
- 5. 控制沖泡時間
- 6. 受測者每次受測前均以清水漱口
- 7. 請該項受測者 3 分鐘內飲用完畢
- 8. 請受測者品嚐後立刻填寫感官評鑑量

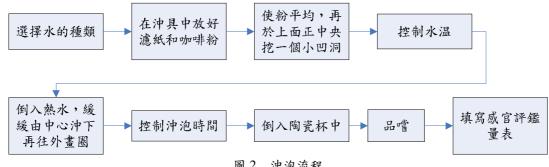


圖 2 沖泡流程

評鑑者與評鑑方法:由於咖啡評鑑標準是以較主觀的方式評斷,所以評鑑者的背景以專業、常在 喝咖啡的人士來評鑑,並邀請評鑑者為5人,並以感官評鑑表給予評分。本研究以咖啡豆的苦味、酸 味、甘味、澀味、香氣、濃度及整體口感進行評鑑,並填寫感官評鑑量表[13],此量表的每個項目以 1~5 分給予評分,藉由專家的經驗評選出曼巴豆特性的最佳風味;每次試驗由 5 位受測者進行,以受 測者評量出主觀評鑑表的分數進行統計分析,分析各因子間的關係;結論則是將研究結果加以描述, 提出具體的成果。

4. 實驗分析與結果

實驗設計(Design of Experiments)是以有系統的方法設計實驗,研究某種反應之重要因素,依此作 為控制或改進的參考依據[14]。其目的則是以最經濟的方法,得到最小實驗誤差之數據作為進一步統計 分析之參考;也為尋求符合生產目標的生產組合。所謂「實驗」是研究人員針對特別的系統或製造程 序,進行一個或一連串有目地且具效率地改變輸入變數,藉以觀察此製造程序或系統變化的原因,因 此本實驗以全因子實驗設計進行實驗。表4為本研究因子實驗設計組合表。

水的種類	RO		自來水			礦泉水			
溫度 沖泡時間	90	75	60	90	75	60	90	75	60
100	a1	a2	a3	b1	b2	b3	c1	c2	c3
95	d1	d2	d3	e1	e2	e3	f1	f2	f3
90	g1	g2	g3	h1	h2	h3	i1	i2	i3

表 4 本研究因子水準組合表

實驗結果:

本研究在沖泡過程中經由調控水的溫度、時間,沖泡出咖啡,再經由受測者杯測的評比得到苦味、 酸味、甘味、澀味、香氣、濃度和整體口感,共七種結果。分別針對各種結 果作變異數分析(α=0.05),主要分析結果分為下:

- 1. 在溫度調控下,苦味依照表5評分,其變異數分析的結果可從表10得知其苦味有顯著差異。由表 15 所示,溫度在 100℃時會比在 90℃好。從表 10 得知 p<.01,表溫度與時間之間有明顯顯著交互 作用。而對於水的種類、溫度、沖泡時間三者之間 p<.05,表有明顯顯著交互作用。
- 2. 在水的種類、時間調控下,酸味依照表 6 評分,其變異數分析的結果可從表 11 得知其酸味有顯著 的差異。由表 16 所示,沖泡時間在 90 分鐘時會比在 75 分鐘好。從表 11 看出,水的種類與溫度 和水的種類與沖泡時間的 p<.01,表之間有顯著交互作用;而三者之間 p<.05,顯示三者間也有顯 著交互作用。
- 3. 在水的種類調控下,甘味依照表7評分,其變異數分析的結果可從表12得知其甘味有顯著差異。 由表 17 所示,水的種類在 RO 會比自來水好; RO 會比礦泉水好。從表 12 得知,三者之間有明顯 顯著交互作用,其 p<.01。
- 4. 在時間調控下,澀味依照表 8 評分,其變異數分析的結果可從表 13 得知其澀味有顯著差異。由表 16 所示,沖泡時間在 90 分鐘時會比在 75 分鐘好。從表 13 對於水的種類、溫度、沖泡時間三者之 間 p<.05,表有明顯顯著交互作用。

5. 在水的種類、溫度調控下,整體口感依照表 9 評分,其變異數分析的結果可從表 14 得知其整體口感有顯著的差異。由表 17 所示,水的種類在 RO 會比礦泉水好;自來水會比礦泉水好。從表 14 得知,水的種類與沖泡時間比水的種類與溫度的交互作用來得大,有較顯著交互作用。

		表 5 苦味語	平分表					
酸	不	稍微	苦	很	非常			
味	苦	苦		苦	苦			
分數	1	2	3	4	5			
表 6 酸味評分表								
整體	不	稍微	酸	很	非常			
口感	酸	酸		酸	酸			
分數	1	2	3	4	5			
		表7 甘味言	平分表					
酸	不	稍微	甘	很	非常			
味	甘	甘		甘	甘			
分數	1	2	3	4	5			
	表 8	澀味評分表						
酸	不	稍微	沙山	很	非常			
味	湖仙	湖		初加	淜			
分數	1	2	3	4	5			
	•	+ 0 + + + +	B 3 ±					

表 9	整體口	感評分表

整體	不	稍微	好	很	非常
口感	好	好		好	好
分數	1	2	3	4	5

表 10 苦味變異數分析表

Source	SS	d.f	MS	F	p-value
A-最後階段	1.40	2	0.70	0.63	0.53
B-第二階段_溫度	8.87	2	4.43	3.99	0.02 *
C-第二階段_時間	1.27	2	0.63	0.57	0.57
AB	3.07	4	0.77	0.69	0.60
AC	6.93	4	1.73	1.56	0.19
BC	23.73	4	5.93	5.34	0.00 **
ABC	21.33	8	2.67	2.40	0.02 *
Pure Error	270.10	243	1.11		
Cor Total	2713.00	270			

^{*} p<.05 ** p<.01

表 11 酸味變異數分析表

Source	SS	d.f	MS	F	p-value
A-最後階段	3.76	2	1.88	2.97	0.05 *
B-第二階段_溫度	2.02	2	1.01	1.60	0.20
C-第二階段_時間	4.47	2	2.23	3.53	0.03 *
AB	25.69	4	6.42	10.15	0.00 **
AC	12.44	4	3.11	4.92	0.00 **
BC	4.71	4	1.18	1.86	0.12
ABC	11.38	8	1.42	2.25	0.02 *
Pure Error	153.70	243	0.63		
Cor Total	1239.00	270			

^{*} p<.05 ** p<.01

表 12 甘味變異數分析表

Source	SS	d.f	MS	F	p-value
A-最後階段	30.19	2	15.09	21.45	0.00 **
B-第二階段_溫度	2.16	2	1.08	1.54	0.22
C-第二階段_時間	1.10	2	0.55	0.78	0.46
AB	1.84	4	0.46	0.65	0.63
AC	6.30	4	1.58	2.24	0.07
BC	3.79	4	0.95	1.35	0.25
ABC	16.94	8	2.12	3.01	0.00 **
Pure Error	171.00	243	0.70		
Cor Total	1694.00	270			

^{*} p<.05 ** p<.01

表 13 澀味變異數分析表

	,	1 ~ //	24.74 11		
Source	SS	d.f	MS	F	p-value
A-最後階段	1.27	2	0.64	0.66	0.52
B-第二階段_溫度	1.56	2	0.78	0.81	0.44
C-第二階段_時間	6.10	2	3.05	3.17	0.04 *
AB	6.19	4	1.55	1.61	0.17
AC	7.13	4	1.78	1.85	0.12
BC	8.50	4	2.13	2.21	0.07
ABC	16.74	8	2.09	2.18	0.03 *
Pure Error	233.50	243	0.96		
Cor Total	1357.00	270			

^{*} p<.05 ** p<.01

表 14 整體口感變異數分析表

Source	SS	d.f	MS	F	p-value
A-最後階段	11.92	2	5.96	9.55	0.00 **
B-第二階段_溫度	3.67	2	1.84	2.94	0.05 *
C-第二階段_時間	3.43	2	1.71	2.75	0.07
AB	2.59	4	0.65	1.04	0.39
AC	12.10	4	3.03	4.85	0.00 **
BC	6.15	4	1.54	2.46	0.05 *
ABC	3.85	8	0.48	0.77	0.63
Pure Error	151.60	243	0.62		
Cor Total	2126.00	270			

^{*} p<.05 ** p<.01

表 15 口感多重比較 Scheffe 法(溫度)

依變數 (I) 溫度 (J) 温度 平均數差異 (I-J) 標準誤 顯著性 苦 100.00 90.00 0.43 0.16 0.02*

表 16 口感多重比較 Scheffe 法(沖泡時間)

依變數(I)	沖泡時間 (J)	沖泡時間	平均數差異	(I-J) 標準誤:	顯著性
酸	90.00	75.00	0.30	0.12	0.04*
加加	90.00	75.00	0.37	0.15	0.04*

^{*} p<.05 ** p<.01

表 17 口感多重比較 Scheffe 法(水的種類)

依變數	(I) 水的種類(J) 水的種類	平均數差異	(I-J) 標準誤	顯著性
甘	RO	自來水	0.61	0.13	0.00**
		礦泉水	0.78	0.13	0.00**
整體口感	RO	礦泉水	0.50	0.12	0.00**
	自來水	礦泉水	0.36	0.12	0.01**

^{*} p<.05 ** p<.01

5. 結論與建議

本研究發現在調控溫度時即造成苦度有顯著差異,且曼巴豆種在溫度採用 100℃時會比在 90℃好,其口味特徵苦味是顯著的,而在採用 95℃、90℃,其口味特徵其苦味較不顯著。在水的種類、時間調控下,酸味有顯著差異,且咖啡豆在沖泡時間在 90 分鐘時會比在 75 分鐘好。在水的種類調控下,甘味有顯著差異,水的種類在 RO 會比自來水、礦泉水好。在時間調控下,澀味有顯著差異,沖泡時間在 90 分鐘時會比在 75 分鐘好。因此,在調整口味上可藉由每個人對於咖啡口味的喜愛,來調控沖泡咖啡時的改變。

在整體口感方面,在水的種類、溫度調控下有顯著差異,水的種類在 RO 會比礦泉水好;自來水會比礦泉水好。可見受測者對於水的種類的不同,較喜好 RO 沖泡出來的咖啡,因此在整體口感的評比上 RO 會比其他種類的水口感來的好。

本研究探討咖啡沖泡實驗因子(水的種類、水溫、沖泡時間),日後研究可再加入咖啡粉粗細、不同咖啡豆種類、水流、壓力等等作為實驗因子,並結合田口參數設計進行實驗。

^{*} p<.05 ** p<.01

參考文獻

- 1. John Wiley & Sons, "Design and Analysis of Experiment", 2005.
- 2. 大紀元報導"屏東縣政府力推咖啡產業原鄉咖啡正飄香",96-10-23

取自: http://www.epochtimes.com/b5/7/11/23/n1911628.htm

- 3. 楊昭景。(1996)。餐飲概論。台北:儒林圖書。
- 4. 台灣果汁咖啡網,咖啡飲料專欄,2008

取自:http://coffee.juice.com.tw/coffee_knowhow.htm

5. YILAN 美食生活玩家, 2008

取自:http://www.yilan.com.tw/html/modules/mymall/index.php?cid=35

6. T.C.A 台灣咖啡協會, 2008

取自:<u>http://www.taiwancoffee.org/</u>

7. KOHIKAN 珈琲館, 2008

取自:http://www.kohikan.com/culture/method/method1.htm

8. 凱蒂咖啡館 咖啡豆, 2008

取自:http://www.tacocity.com.tw/KCS/3-3.htm

9. 上班 543 論壇 咖啡沖泡法,2008

取自:http://forum.ctjob.com.tw/showthread.php?t=4188

10. iThome online 部落格, 2008

取自: http://www.ithome.com.tw/plog/index.php?op=ViewArticle&articleId=9894&blogId=779

- 11. 林威逸,雲林縣古坑鄉咖啡產業觀光發展與空間生產,世新大學觀光學系碩士論文,2005。
- 12. 李淑任,咖啡館之休閒體驗與顧客參與之探討-以台中縣市咖啡館為例,大葉大學休閒事業管理學系碩士論文,2005。
- 13. 沈盈貝,高雄市都會上班族對咖啡飲品飲食偏好之研究,靜宜大學觀光事業研究所碩士論文, 2004。
- 14. 鄭博文 陳育維* 周怡伶 程嘉維,應用實驗設計於咖啡烘焙後口味之探討,國立雲林科技大學工業工程與管理研究所,2007。
- 15. 黎正中、陳源樹,2005,實驗設計與分析,台北縣:高立圖書公司。