

### 品質與可靠度工程實驗室

Quality and Reliability Engineering Lab.

# Ch6 二階反應曲面法-實驗設計

授課教授: 童超塵 老師

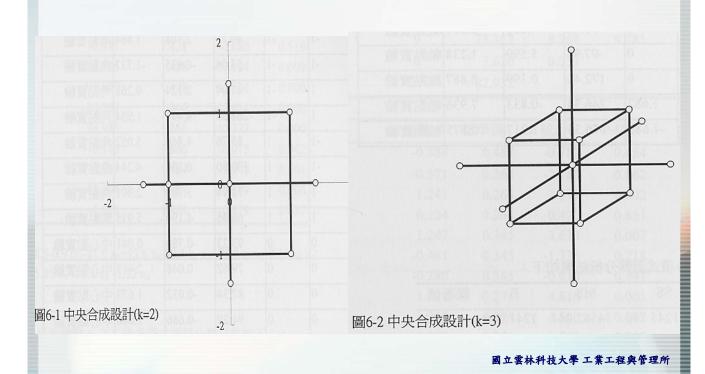
實驗室網址 永久: http://campusweb.yuntech.edu.tw/~qre/index.ht

目前: http://140.125.88.116/QRE

# 議程

- 1. 二階反應曲面實驗設計簡介
- 2. 中央合成設計
- 3. Box-Behnken設計
- 4. 最佳化準則設計
- 5. 隨機產生設計
- 6. 二階反應曲面實驗設計之比較

# 6.1 二階反應曲面實驗設計簡介


- •二階近似函數有1+2k+k(k-1)/2個參數,因此至少需 1+2k+k(k-1)/2個設計點,且因有二次曲率項,所以因子 至少要有三水準。如k=2,3,4,5,6,7則至少需6, 10,15,21,28,36個設計點。
  - ·二階反應曲面實驗可由一階反應曲面實驗擴充得到,以節省實驗成本。
    - 本章將介紹四種二階反應曲面實驗設計:
      - ▶中央合成設計
      - ▶Box-Behnken設計
      - ▶最佳化準則設計
      - ▶隨機產生設計

國立雲林科技大學工業工程與管理所

# 1. 中央合成設計

- 中央合成設計原理:估計係數變異之最小化 中央合成設計由下列三種實驗構成:
  - 1. 角點實驗:因為二階模型含二因子交互作用,因 此須採解析度V以上之因子設計實驗。
  - 軸點實驗:因為二階模型含二次曲率作用,因此 在軸線上距中心點α處(二端)進行實驗。又為 了使實驗設計具有可旋性,須令α=√F,其中F 為角點實驗之因子設計實驗數。
  - 3. 中心點實驗:因為要使中心點之預測變異合理 化,因此要有重複實驗的中心點實驗。一般而 言,重複實驗次數 (n<sub>c</sub>) 取3至5。

以2因子與3因子為例,其中央合成設計的實驗點分佈 如下圖



 例題6.1 二階模型實驗設計1:中央合成設計 延續例題5.4半導體晶圓問題,假設經過一

階反應曲面法之參數優化過程後,得到一個最佳設計點,該點曲率效果顯著,故須改採二階反應曲面法之參數優化策略。此外為了滿足其它次要的品質特性需求,實驗時的反應變數多出二個。試以該點為中心點,以中央合成設計法作

- 1. 實驗設計
- 2. 模型建構

## • (1) 實驗設計

例題5.4之一階模式實驗設計為具中心點實驗 (n<sub>c</sub>=4)之因子實驗設計,故只要再增加軸點實驗,就可構成二階模式實驗設計之中央合成設計。軸點實驗的參數

 $\alpha = \sqrt[4]{F} = \sqrt[4]{8} = 1.682$ 

實驗設計如下表第2-4行,實驗數據假設如下表第5-7行:

| No. | x,     | $x_2$  | <i>x</i> <sub>3</sub> | <i>y</i> 1 | y <sub>2</sub> | $y_s$  | 說明    |
|-----|--------|--------|-----------------------|------------|----------------|--------|-------|
| 1   | -1     | -1     | -1                    | 49.75      | 2.108          | 1.864  | 角點實驗  |
| 2   | 1      | -1     | -1                    | 58.06      | -0.635         | -1.737 | 角點實驗  |
| 3   | -1     | 1      | -1                    | 47.04      | 2.124          | 0.268  | 角點實驗  |
| 4   | 1      | 1      | -1                    | -268.53    | 4.401          | 1.934  | 角點實驗  |
| 5   | -1     | -1     | 1                     | 85.76      | 4.860          | 5.052  | 角點實驗  |
| 6   | 1      | -1     | 1                     | 390.50     | 0.304          | 4.244  | 角點實驗  |
| 7   | -1     | 1      | 1                     | 78.98      | 3.789          | 2.001  | 角點實驗  |
| 8   | 1      | 1      | 1                     | 66.86      | 4.190          | 5.935  | 角點實驗  |
| 9   | 0      | 0      | 0                     | 93.23      | -0.780         | 0.041  | 中心點實驗 |
| 10  | 0      | 0      | 0                     | 79.62      | 0.046          | 2.415  | 中心點實驗 |
| 11  | 0      | 0      | 0                     | 87.34      | -0.032         | 1.673  | 中心點實驗 |
| 12  | 0      | 0      | 0                     | 94.29      | -0.686         | 1.080  | 中心點實驗 |
| 13  | 1.682  | - 0    | 0                     | 72.30      | 2.167          | 1.636  | 軸點實驗  |
| 14  | -1.682 | 0      | 0                     | 71.48      | 4.059          | 2.379  | 軸點實驗  |
| 15  | 0      | 1.682  | 0                     | -97.95     | 5.599          | 1.238  | 軸點實驗  |
| 16  | 0      | -1.682 | 0                     | 172.40     | 0.199          | 0.867  | 軸點實驗  |
| 17  | 0      | 0      | 1.682                 | 246.34     | -0.833         | 7.936  | 軸點實驗  |
| 18  | 0      | 0      | -1.682                | -76.33     | 1.217          | 0.875  | 軸點實驗  |

# (2) 模型建構

反應變數 yı 之二階多項式迴歸分析結果如下:

|    | 自由度 | SS         | MS        | F        | 顯著值   |
|----|-----|------------|-----------|----------|-------|
| 迴歸 | 9   | 311245.746 | 34582.861 | 1241.010 | 0.000 |
| 殘差 | 8   | 222.934    | 27.867    |          |       |
| 總和 | 17  | 311468.680 |           |          |       |

| (5.2)        | 係數      | 標準誤   | t 統計    | P-値   |
|--------------|---------|-------|---------|-------|
| 截距           | 88.606  | 2.636 | 33.619  | 0.000 |
| $x_{I}$      | -0.971  | 1.428 | -0.680  | 0.516 |
| $x_2$        | -81.595 | 1.428 | -57.124 | 0.000 |
| $x_3$        | 93.607  | 1.428 | 65.534  | 0.000 |
| $x_1x_2$     | -80.093 | 1.866 | -42.914 | 0.000 |
| $x_1x_3$     | 74.985  | 1.866 | 40.177  | 0.000 |
| $x_{2}x_{3}$ | -0.140  | 1.866 | -0.075  | 0.942 |
| $x_1^2$      | -5.851  | 1.484 | -3.942  | 0.004 |
| $x_2^2$      | -18.104 | 1.484 | -12.199 | 0.000 |
| $x_3^2$      | -1.215  | 1.484 | -0.819  | 0.437 |

 $y_i$ =88.6-0.97 $x_i$ -81.6  $x_2$ +93.6  $x_3$ -80.1  $x_1$   $x_2$ +75.0  $x_1$   $x_3$ -0.14  $x_2$   $x_3$ +技大學 工業工程與管理所 -5.85  $x_1^2$ -18.1  $x_2^2$ -1.22  $x_3^2$ 

| □ 7万 約条由人     | y <sub>2</sub> 之二階多項式迴歸分析結果如下 |  |
|---------------|-------------------------------|--|
| IV IIE MENTEN | V2 / 以答えが日子(計画をサイトにを言うまり) ト   |  |
| /_//PA        | 7/K                           |  |

|    | 自由度 | SS     | MS    | F     | 顯著值   |
|----|-----|--------|-------|-------|-------|
| 迴歸 | 9   | 75.312 | 8.368 | 8.785 | 0.003 |
| 殘差 | 8   | 7.620  | 0.953 |       |       |
| 總和 | 17  | 82.932 |       |       |       |

|          | 係數     | 標準誤   | t 統計   | P-値   |
|----------|--------|-------|--------|-------|
| 截距       | -0.384 | 0.487 | -0.787 | 0.454 |
| $X_I$    | -0.571 | 0.264 | -2.163 | 0.062 |
| $X_2$    | 1.241  | 0.264 | 4.699  | 0.002 |
| $X_3$    | 0.124  | 0.264 | 0.470  | 0.651 |
| $x_1x_2$ | 1.247  | 0.345 | 3.614  | 0.007 |
| $x_1x_3$ | -0.461 | 0.345 | -1.336 | 0.218 |
| $x_2x_3$ | -0.280 | 0.345 | -0.810 | 0.441 |
| $x_1^2$  | 1.321  | 0.274 | 4.816  | 0.001 |
| $x_2^2$  | 1.246  | 0.274 | 4.540  | 0.002 |
| $x_3^2$  | 0.289  | 0.274 | 1.053  | 0.323 |

學理所

### 反應變數 y<sub>3</sub> 之二階多項式迴歸分析結果如下:

|    | 自由度 | SS     | MS    | F      | 顯著值   |
|----|-----|--------|-------|--------|-------|
| 迴歸 | 9   | 85.945 | 9.549 | 20.467 | 0.000 |
| 殘差 | 8   | 3.733  | 0.467 |        |       |
| 總和 | 17  | 89.678 |       |        |       |

|                       | 係數     | 標準誤   | t 統計   | P-値   |
|-----------------------|--------|-------|--------|-------|
| 截距                    | 1.308  | 0.341 | 3.835  | 0.005 |
| $x_{l}$               | -0.004 | 0.185 | -0.023 | 0.982 |
| x2                    | 0.098  | 0.185 | 0.530  | 0.610 |
| <i>x</i> <sub>3</sub> | 1.961  | 0.185 | 10.609 | 0.000 |
| $x_1x_2$              | 1.251  | 0.241 | 5.181  | 0.001 |
| $x_1x_3$              | 0.633  | 0.241 | 2.620  | 0.031 |
| $x_2x_3$              | -0.430 | 0.241 | -1.779 | 0.113 |
| $x_l^2$               | 0.225  | 0.192 | 1.169  | 0.276 |
| $x_2^2$               | -0.113 | 0.192 | -0.589 | 0.572 |
| $x_3^2$               | 1.072  | 0.192 | 5.583  | 0.001 |

 $y_3$ =1.31+0.10  $x_2$ +1.96  $x_3$ +1.25  $x_1$   $x_2$ +0.63  $x_1$   $x_3$ -0.43  $x_2$   $x_3$ +0.255  $x_1^2$ -0.113  $x_2^2$ +1.072  $x_3^2$ 

工業工程與管理所

## •中央合成設計性質:預測變異之分怖與可旋性

預測變異可用前章(5-6)式求得

$$Var\left[\hat{y}(x)\right] = x^{(m)'}(X'X)^{-1}x^{(m)} \bullet \sigma^2$$

可旋性是指預測變異Vary(x) 在距中心點等距處等值,這樣的分佈十分合理,是實驗者樂於看到的性質。中央合成設計具有可旋性或近似可旋性的性質。

### •中央合成設計變形:面心式中央合成設計

面心式中央合成設計是中央合成設計的變形,它 將實驗分佈在立方體內,故軸點實驗是位在軸線上距中 心點距離1處(二端)。當正規的中央合成設計之軸點實 驗超過可行實驗範圍時,面心式中央合成設計是其替代 方案。

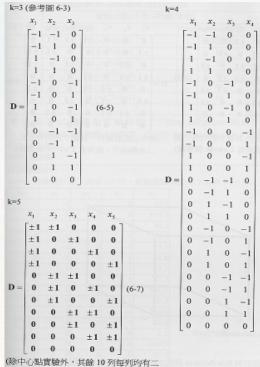
### • 中央合成設計區集:因子區集與軸區

二階實驗設計同樣也有區集設計問題,其設計要訣是將實驗分成因 子區集與軸區集二部分。例如二因子二區集之設計如下:

| 因子    | 區集    |         | 軸區组         | <b>集</b>    |
|-------|-------|---------|-------------|-------------|
| $x_1$ | $x_2$ |         | $x_1$       | $x_2$       |
| -1    | -1    |         | $-\sqrt{2}$ | 0           |
| -1    | 1     | - A - 1 | $\sqrt{2}$  | 0           |
| 1     | -1    | 01 0    | 0           | $-\sqrt{2}$ |
| 1     | 1     |         | 0           | $\sqrt{2}$  |
| 0     | 0     | 01 16   | 0           | 0           |
| 0     | 0     | 4 2     | 0           | 0           |

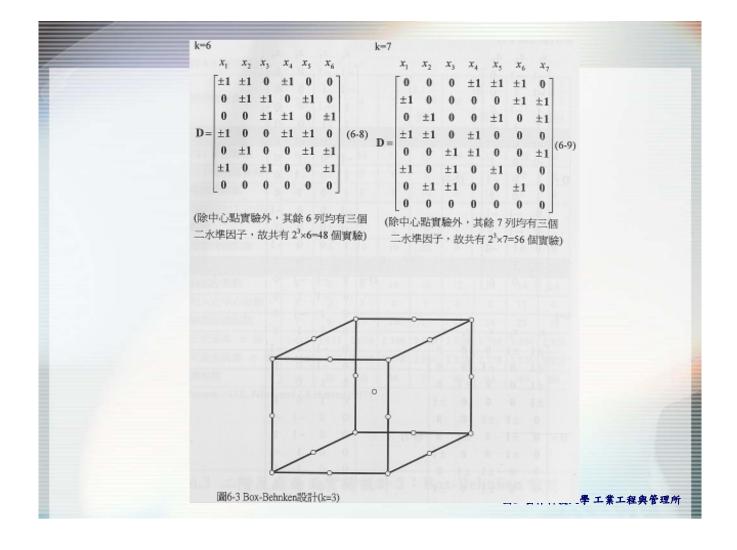
### 三因子三區集之設計如下:

| 因子區   | 集1    | 28 [2,37 | 因子區集  | ₹2    | 2,000 | 軸區集       | VII M     | No SEE                |
|-------|-------|----------|-------|-------|-------|-----------|-----------|-----------------------|
| $x_1$ | $x_2$ | $x_3$    | $x_1$ | $x_2$ | $x_3$ | $x_1$     | $x_2$     | <i>x</i> <sub>3</sub> |
| -1    | -1    | -1       | 1     | -1    | -1    | $-\alpha$ | 0         | 0                     |
| 1     | 1     | -1       | -1    | 1     | -1    | α         | 0         | 0                     |
| 1     | -1    | 1        | -1    | -1    | 1     | 0         | $-\alpha$ | 0                     |
| -1    | 1     | 1        | 1     | 1     | 1     | 0         | α         | 0                     |
| 0     | 0     | 0        | 0     | 0     | 0     | 0         | 0         | $-\alpha$             |
| 0     | 0     | 0        | 0     | 0     | 0     | 0         | 0         | α                     |
|       |       |          |       |       |       | 0         | 0         | 0                     |
|       |       |          |       |       |       | 0         | 0         | 0                     |
|       |       |          |       |       |       | 0         | 0         | 0                     |


科技大學 工業工程與管理所

# • 其它更複雜的區集設計可查表,如下表

| 因子數目(k)   | 2     | 3     | 4       | 5     | 5: <sup>1</sup> / <sub>2</sub><br>部份 | 6     | $6:\frac{1}{2}$ 部份 | 7     | $7:\frac{1}{2}$ 部份 |
|-----------|-------|-------|---------|-------|--------------------------------------|-------|--------------------|-------|--------------------|
|           |       |       | 因子      | 區集    |                                      |       |                    |       |                    |
| 因子部份點數    | 4     | 8     | 16      | 32    | 16                                   | 64    | 32                 | 128   | 64                 |
| 因子部份區集數   | 1     | 2     | 2       | 4     | 1                                    | 8     | 2                  | 16    | 8                  |
| 每部份點數     | 4     | 4     | 8       | 8     | 16                                   | 8     | 16                 | 8     | 8                  |
| 每部份加入之中心  |       | 140   | - 3.533 | 1     | 100                                  |       |                    |       |                    |
| 點數        | 3     | 2     | 2       | 2     | 6                                    | 1     | 4                  | 1     | 1                  |
| 每部份總點數    | 7     | 6     | 10      | 10    | 22                                   | 9     | 20                 | 9     | 9                  |
|           |       |       | 軸       | 區集    |                                      |       |                    |       |                    |
| 軸部份點數     | 4     | 6     | 8       | 10    | 10                                   | 12    | 12                 | 14    | 14                 |
| 加入之中心點數   | 3     | 2     | 2       | 4     | 1                                    | 6     | 2                  | 11    | 4                  |
| 軸部份總點數    | 7     | 8     | 10      | 14    | 11                                   | 18    | 14                 | 25    | 18                 |
| 正交區集 α 値  | 1.414 | 1.633 | 2.000   | 2.366 | 2.000                                | 2.828 | 2.366              | 3.364 | 2.828              |
| 可旋性區集 α 値 | 1.414 | 1.682 | 2.000   | 2.378 | 2.000                                | 2.828 | 2.378              | 3.333 | 2.828              |
| 總點數       | 14    | 20    | 30      | 54    | 33                                   | 90    | 54                 | 169   | 90                 |


# 3. Box-Behnken設計

Box-Behnken設計是除了中央合成設計外,另一種重要的二階反應曲面實驗設計,當因子數k為3至7時其設計如下:



個二水準因子,故共有 22×10=40 個實驗)

國立雲林科技大學工業工程與管理所



中央合成設計與Box-Behnken設計之比較如下表所示, 可以看出二者的實驗次數大致接近。

|     | 實驗次數(不含中心點實驗)               |                |  |  |  |  |  |
|-----|-----------------------------|----------------|--|--|--|--|--|
| 因子數 | 中央合成設計                      | Box-Behnken 設計 |  |  |  |  |  |
| 2   | 8 (=2 <sup>2</sup> +2×2)    | 無此設計           |  |  |  |  |  |
| 3   | 14 (=2 <sup>3</sup> +2×3)   | 12             |  |  |  |  |  |
| 4   | 24 (=2 <sup>4</sup> +2×4)   | 24             |  |  |  |  |  |
| 5   | 26 (=2 <sup>5-1</sup> +2×5) | 40             |  |  |  |  |  |
| 6   | 44 (=2 <sup>6-1</sup> +2×6) | 48             |  |  |  |  |  |
| 7   | 78 (=2 <sup>7-1</sup> +2×7) | 56             |  |  |  |  |  |

國立雲林科技大學工業工程與管理所

• 例題6.2 二階模型實驗設計2:Box-Behnken設計

延續例題6.1半導體晶圓問題,但改採Box-Behnken設計。試作

- 1. 實驗設計
- 2. 模型建構

# • (1) 實驗設計

n<sub>c</sub> = 4,實驗設計如下表第2-4行,實驗數據假設如下表第五

行(只以y<sub>1</sub>為例)

| No. | $x_1$ | $x_2$ | <i>x</i> <sub>3</sub> | <i>y</i> <sub>1</sub> |                 |
|-----|-------|-------|-----------------------|-----------------------|-----------------|
| 1   | -1    | -1    | 0                     | 62.6                  |                 |
| 2   | -1    | 1     | 0                     | 175.2                 |                 |
| 3   | 1     | -1    | 0                     | 84.1                  |                 |
| 4   | 1     | 1     | 0                     | 72.7                  |                 |
| 5   | -1    | 0     | -1                    | 75.5                  |                 |
| 6   | -1    | 0     | 1                     | -81.6                 |                 |
| 7   | 1     | 0     | -1                    | -14.7                 |                 |
| 8   | 1     | 0     | 1                     | 53.3                  |                 |
| 9   | 0     | -1    | -1                    | 391.5                 |                 |
| 10  | 0     | -1    | 1                     | 89.5                  |                 |
| 11  | 0     | 1     | -1                    | 230.9                 |                 |
| 12  | 0     | 1     | 1                     | 62.6                  |                 |
| 13  | 0     | 0     | 0                     | 1.2                   |                 |
| 14  | 0     | 0     | 0                     | -269.5                |                 |
| 15  | 0     | 0     | . 0                   | 97.3                  |                 |
| 16  | 0     | 0     | 0                     | 79.9                  | 雲林科技大學 工業工程與管理所 |

## • (2) 模型建構

反應變數y<sub>1</sub>之二階多項式迴歸分析結果如下:

|    | 自由度 | SS       | MS       | F       | 顯著值      |
|----|-----|----------|----------|---------|----------|
| 迴歸 | 9   | 168652.1 | 18739.13 | 482.726 | 7.01E-08 |
| 殘差 | 6   | 232.9163 | 38.81938 |         |          |
| 總和 | 15  | 168885   |          |         |          |

|          | 係數      | 標準誤   | t 統計    | P-値      |
|----------|---------|-------|---------|----------|
| 截距       | 86.906  | 3.115 | 27.896  | 1.4E-07  |
| $x_I$    | -2.638  | 2.202 | -1.197  | 0.276154 |
| $x_2$    | -80.505 | 2.202 | -36.546 | 2.8E-08  |
| $x_3$    | 91.222  | 2.202 | 41.411  | 1.33E-08 |
| $x_1x_2$ | -79.758 | 3.115 | -25.602 | 2.34E-07 |
| $x_1x_3$ | 76.312  | 3.115 | 24.496  | 3.04E-07 |
| $x_2x_3$ | -4.717  | 3.115 | -1.514  | 0.180727 |
| $x_1^2$  | -6.494  | 3.115 | -2.084  | 0.082195 |
| $x_2^2$  | -17.051 | 3.115 | -5.473  | 0.001553 |
| $x_3^2$  | -1.784  | 3.115 | -0.572  | 0.587658 |

 $y_{l} = 88.9 - 2.6x_{l} - 80.5x_{2} + 91.2x_{3} - 79.8x_{l}x_{2} + 76.3x_{l}x_{3} - 4.7x_{2}x_{3} - 6.5x_{l}^{2} - 17.1x_{2}^{2} - 1.8x_{3}^{2} = \text{\#Implies}$ 

# 4. 最佳化準則設計

- · 當實驗預算十分有限的情況下,前二節所提的方法可能都無法實施。例如五因子之二階實驗設計,假設中心點實驗重複次數5次,由表6-2知,至少要進行26+5=31次實驗。如果實驗預算只允許作25次實驗,這時需仰賴電腦依一定的準則來設計實驗。
- 本章前面曾提到二階函數有1+2k+k(k-1)/2個參數, 因此至少需1+2k+k(k-1)/2個設計點,故k=5則至少需21個 設計點。因此以25次實驗來建構二階反應曲面是可行 的,它尚保存自由度25-21=4之誤差方差估計能力。

國立雲林科技大學工業工程與管理所

 反應曲面實驗設計的目的在於以最少的實驗次數,獲 致最精確的模型。最精確模型的定義很多,但一個比 較簡單實用的定義為「估計係數變異Var b最小的模型」:

Min var b

由迴歸分析一章可知估計係數協方差的公式如下:

Cov b=  $\sigma^{2}$  (X'X) -1

其中 σ2=殘差之變異數

X=實驗數據所構成的矩陣(實驗矩陣)

例如假設模型爲

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \varepsilon$$

則

$$\mathbf{b} = \begin{cases} b_0 \\ b_1 \\ b_2 \\ b_{12} \\ b_{11} \\ b_{22} \end{cases} \qquad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & x_{11}x_{12} & x_{11}^2 & x_{12}^2 \\ 1 & x_{21} & x_{22} & x_{21}x_{22} & x_{21}^2 & x_{22}^2 \\ \vdots & \vdots & & \vdots & & \vdots \\ 1 & x_{n1} & x_{n2} & x_{n1}x_{n2} & x_{n1}^2 & x_{n2}^2 \end{bmatrix}$$
(6-13)

其中  $x_{ij}$  = 爲第 i 筆數據之第 j 個自變數之值。一個具有 p 個項(不含常數項)的多項式函數模型之實驗矩陣 X 具有 p+1 個 n 維向量,n 爲實驗回合。其中第一個向量爲 1 構成之常數向量,其餘 p 個向量爲各個因子構成之變數向量。

估計係數變異 Var b 即 Cov b 的對角元素,故由(6-12)式可知模型變異 Var b 要越小,則(X'X) $^{-1}$ 對角元素要越小;(X'X) $^{-1}$ 對角元素要越小,則 X'X 的行列值要越大。所謂 D-最佳化準則(D-Optimality)實驗設計即行列值最大化實驗設計:

 $Max | \mathbf{X}' \mathbf{X} |$  (6-14)

•除了D-最佳化準則外,也有學者提出A-最佳化準則, G-最佳化準則, Q-最佳化準則,簡述如下:

▶A-最佳化準則:以最小化最大Varb為目標,以最小化矩陣之反矩陣的跡(trace)為方法。

▶G-最佳化準則,以最小化實驗範圍內最大預測 變異 (Var [ŷ(x)] 為目標

▶Q-最佳化準則,以最小化實驗範圍內平均預測變異 (Var[ŷ(x)] 為目標

一般而言,仍以D-最佳化準則最簡潔易懂。

• 例題6.3 二階模型實驗設計3:最佳化準則設計

延續例題6.1半導體晶圓問題,但因經費限制, 只能作14次實驗,試以D最佳化準則作

- 1. 實驗設計
- 2. 模型建構

國立雲林科技大學工業工程與管理所

• (1) 實驗設計

電腦產生實驗設計之輸入參數包括:

模型:二階模型

實驗數:14

候選實驗設計點:27(每個實驗因子均有-1,0,1等

三個值,採三水準全因子實驗,共有33=27)

實驗範圍:範圍為±1之矩形

設計準則:D最佳化準則

•實驗設計如表第2-4行,實驗數據假設如表第5行(只以y<sub>1</sub>為

例)

| No. | $x_I$ | $x_2$ | <i>x</i> <sub>3</sub> | y <sub>I</sub> |
|-----|-------|-------|-----------------------|----------------|
| 1   | 1     | 1     | 1                     | 67.9           |
| 2   | 0     | 0     | 1                     | 65.8           |
| 3   | -1    | 0     | 0                     | 220.5          |
| 4   | -1    | -1    | 0                     | -100.7         |
| 5   | -1    | -1    | 1                     | 63.7           |
| 6   | 1 13  | 0     | -1                    | 97.2           |
| 7   | 0     | 1     | 0                     | -92.5          |
| 8   | -1    | 1     | -1                    | 246.2          |
| 9   | 1     | -1    | 1                     | 54.1           |
| 10  | -1    | 1     | 1                     | 242.4          |
| 11  | 1     | -1    | 0                     | -96.8          |
| 12  | 0     | -1    | -1                    | 72.6           |
| 13  | 0     | 0     | -1                    | 89.4           |
| 14  | 1     | 1     | -1                    | 81.0支大學工業工程與管理 |

# • (2)模型建構

反應變數y<sub>1</sub>之二階多項式迴歸分析結果如下:

|          | - 一世のカイエートンロウチ パ してん ロフィー | _   |   |
|----------|---------------------------|-----|---|
|          |                           | -   |   |
| Cherses. | 之二階多項式迴歸分析結果如门            | 100 | • |

|    |     |          |          | 1-2.1    |          |
|----|-----|----------|----------|----------|----------|
|    | 自由度 | SS       | MS       | F        | 顯著值      |
| 迴歸 | 9   | 291238.2 | 32359.79 | 1925.894 | 6.58E-07 |
| 殘差 | 4   | 67.20993 | 16.80248 |          |          |
| 總和 | 13  | 291305.4 |          |          |          |

|          | 係數       | 標準誤      | t 統計     | P-値      |
|----------|----------|----------|----------|----------|
| 截距       | 86.85796 | 3.243702 | 26.77742 | 1.16E-05 |
| $x_1$    | -2.68785 | 1.348095 | -1.99381 | 0.11694  |
| $x_2$    | -82.6136 | 1.3499   | -61.1998 | 4.27E-07 |
| $x_3$    | 88.49723 | 1.395183 | 63.43055 | 3.7E-07  |
| $x_1x_2$ | -84.2708 | 1.509888 | -55.8126 | 6.17E-07 |
| $x_1x_3$ | 74.80769 | 1.694476 | 44.14798 | 1.57E-06 |
| $x_2x_3$ | 3.215601 | 1.692306 | 1.90013  | 0.130219 |
| $x_l^2$  | -1.79685 | 2.751056 | -0.65315 | 0.5493   |
| $x_2^2$  | -18.1257 | 2.611336 | -6.94116 | 0.002263 |
| $x_3^2$  | -0.5624  | 2.558826 | -0.21979 | 0.836798 |

- 採用D-最佳化準則的電腦產生之實驗設計有下列缺點:
  - 1. 模型錯估時,所產生的模型會有較大的誤差,故較 不強健。
  - 2. 未考慮預測變異分佈之性質(例如可旋性),因此 預測變異分佈情形可能不是很理想。
  - 3. 常未選用中心點實驗,因此在中心點處可能有大的 預測變異。

國立雲林科技大學工業工程與管理所

# 5. 隨機產生設計

- 二階反應曲面實驗設計也可用隨機產生的方式得到,但這種設計效率甚低,因為在相同的實驗次數下,所獲致的模型最不精確。
- 例題6.4 二階模型實驗設計4:隨機產生之實驗設計 延續例題6.3半導體晶圓問題,但改採隨機產生之實驗設計。

# (1)實驗設計

實驗設計如表第2-4行,實驗數據假設如表第5行(只以

y1為例)

| No. | $x_1$ | $x_2$ | . x <sub>3</sub> | <i>y</i> <sub>1</sub> |
|-----|-------|-------|------------------|-----------------------|
| 1   | 1     | -1    | 0                | 218.9                 |
| 2   | 0     | 1     | -1               | -111.7                |
| 3   | 0     | 0     | -1               | 2.5                   |
| 4   | -1    | -1    | -1               | 47.2                  |
| 5   | 0     | 0     | 0                | 82.9                  |
| 6   | -1    | 1     | 1                | 74.1                  |
| 7   | 0     | 1     | 0                | -5.7                  |
| 8   | 1     | 0     | 0                | 73.5                  |
| 9   | 0     | 0     | 1                | 179.8                 |
| 10  | 1     | -1    | 1                | 398.6                 |
| 11  | -1    | -1    | 0                | 75.6                  |
| 12  | 1     | 0     | 1                | 251.4                 |
| 13  | 0     | -1    | -1               | 48.1                  |
| 14  | 0     | -1    | 1                | 238.2                 |
|     |       |       |                  |                       |

國立雲林科技大學 工業工程與管理所

# (2) 模型建構

反應變數y1之二階多項式迴歸分析結果如下:

|    | 自由度 | SS       | MS       | F      | 顯著值      |
|----|-----|----------|----------|--------|----------|
| 迴歸 | 9   | 222442.9 | 24715.88 | 304.73 | 2.62E-05 |
| 殘差 | 4   | 324.43   | 81.1075  |        |          |
| 總和 | 13  | 222767.4 |          |        |          |

|          |          |          |          | H (C.9)  |  |
|----------|----------|----------|----------|----------|--|
|          | 係數       | 標準誤      | t 統計     | P-値      |  |
| 截距       | 91.10518 | 7.328426 | 12.43175 | 0.000241 |  |
| $X_I$    | -8.71472 | 7.894329 | -1.10392 | 0.331568 |  |
| $x_2$    | -80.7986 | 3.825583 | -21.1206 | 2.97E-05 |  |
| $x_3$    | 93.33818 | 3.983833 | 23.42924 | 1.97E-05 |  |
| $x_1x_2$ | -83.6732 | 8.511478 | -9.83063 | 0.0006   |  |
| $x_1x_3$ | 84.78301 | 8.543919 | 9.923198 | 0.000579 |  |
| $x_2x_3$ | -3.55892 | 5.128757 | -0.69391 | 0.525927 |  |
| $x_l^2$  | -5.39143 | 6.525584 | -0.8262  | 0.455123 |  |
| $x_2^2$  | -22.0773 | 7.229045 | -3.05397 | 0.037881 |  |
| $x_3^2$  | -5.10002 | 6.504004 | -0.78414 | 0.476793 |  |

# 6. 二階反應曲面實驗設計之比較

- 本章以半導體晶圓問題為例,以四種方法作
  - 二階實驗設計,包括:
  - ▶例題6.1 中央合成設計
  - ▶例題6.2 Box-Behnken設計
  - ▶例題6.3 最佳化準則設計
  - ▶例題6.4 隨機產生設計
  - 比較例題6.1~6.4如下

國立雲林科技大學工業工程與管理所

### • 1.迴歸係數之比較

由下表得知,隨機產生設計所得之迴歸係數與其它三種方法有明顯差距,可能較不準確。表 迴歸係數之比較

| 1        | 中央合成  | Box-Behnken | D-最佳化 | 隨機產生  |
|----------|-------|-------------|-------|-------|
|          | 設計    | 設計          | 準則設計  | 設計    |
| 截距       | 88.6  | 86.9        | 86.9  | 91.1  |
| $x_I$    | -1.0  | -2.6        | -2.7  | -8.7  |
| $x_2$    | -81.6 | -80.5       | -82.6 | -80.8 |
| $x_3$    | 93.6  | 91.2        | 88.5  | 93.3  |
| $x_1x_2$ | -80.1 | -79.8       | -84.3 | -83.7 |
| $x_1x_3$ | 75.0  | 76.3        | 74.8  | 84.8  |
| $x_2x_3$ | -0.1  | -4.7        | 3.2   | -3.6  |
| $x_l^2$  | -5.9  | -6.5        | -1.8  | -5.4  |
| $x_2^2$  | -18.1 | -17.1       | -18.1 | -22.1 |
| $x_3^2$  | -1.2  | -1.8        | -0.6  | -5.1  |

### · 2.迴歸係數顯著性(t統計量)之比較

由下表得知,隨機產生設計所得之迴歸係數t統計量遠低於其它 三種方法,較不顯著。

表迴歸係數t統計量之比較

|             | 中央合成  | Box-Behnken | D-最佳化 | 隨機產生  |
|-------------|-------|-------------|-------|-------|
|             | 設計    | 設計          | 準則設計  | 設計    |
| 截距          | 33.6  | 27.9        | 26.8  | 12.4  |
| $x_I$       | -0.7  | -1.2        | -2.0  | -1.1  |
| $x_2$       | -57.1 | -36.5       | -61.2 | -21.1 |
| $x_3$       | 65.5  | 41.4        | 63.4  | 23.4  |
| $x_1x_2$    | -42.9 | -25.6       | -55.8 | -9.8  |
| $x_1x_3$    | 40.2  | 24.5        | 44.1  | 9.9   |
| $x_2x_3$    | -0.1  | -1.5        | 1.9   | -0.7  |
| $x_1^2$     | -3.9  | -2.1        | -0.7  | -0.8  |
| $x_{2}^{2}$ | -12.2 | -5.5        | -6.9  | -3.1  |
| $x_3^2$     | -0.8  | -0.6        | -0.2  | -0.8  |

國立雲林科技大學工業工程與管理所

### · 3.迴歸模型顯著性(F統計量)之比較

由下表得知,隨機產生設計所得之迴歸模型顯著性明顯低於實驗數目同為14之D-最佳化準則設計。至於中央合成設計、Box-Behnken設計、D-最佳化準則設計三者實驗數目不同,由於實驗數目大者,迴歸模型的F統計量愈高,故不能直接比較F統計量。但從顯著值P來看,中央合成設計最顯著,其次依序為Box-Behnken設計、D-最佳化準則設計、隨機產生設計。

表 迴歸模型顯著性 (F統計量) 之比較

|      | 中央合成<br>設計 | Box-Behnken<br>設計 |          | 隨機產生<br>設計 |
|------|------------|-------------------|----------|------------|
| 實驗數  | 18         | 16                | 14       | 14         |
| F統計量 | 1241       | 483               | 1926     | 305        |
| 顯著值P | 1.32E-11   | 7.01E-08          | 6.58E-07 | 2.62E-05   |

# THE END