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Two Alternatives to the

Shewhart X Control Chart

MORTON KLEIN

Columbia University, New York, NY 10027

Average run length (ARL) values are calculated for two X control chart schemes and compared with

those of a standard Shewhart chart. Both control charts are based on runs rules and are easily implemented.

An out-of-control condition for one of the charts is a run of two of two successive points beyond a special

control limit. The other chart uses a run of two of three successive points beyond a different control limit.

Both schemes are shown to have better, that is, lower, ARL values than the standard Shewhart chart for

process average shifts as large as 2.6 standard deviations from the mean.

Introduction

T
HE Shewhart X control chart, which signals an
out-of-control condition when a single point falls

beyond a three-sigma limit, has been the standard
control chart for variables and attributes since the
first quarter of this century. Its attractiveness is
rooted in its simplicity and its ability to detect large
process average shifts quickly. However, it is also
known to be relatively insensitive to small-sustained
process average shifts.

The first proposal (Shewhart (1941)) to make the
Shewhart chart more sensitive to small shifts in the
process average suggested additional tests in the form
of runs rules. Three such tests are described in West-
ern Electric (1956), Nelson (1984), and Montgomery
(1997). They describe an out-of-control condition if
k of n successive points fall beyond one-, two-, or
three-sigma limits, where 2 ≤ k ≤ n. While these
simultaneous tests achieve their goal, they do so at
the expense of significant increases in false out-of-
control signals, as shown in Champ and Woodall’s
(1987) important study. Indeed, Montgomery (1997)
suggested that the additional sensitizing rules should
be used cautiously, because of the potentially delete-
rious effects of false alarms.

Alternative control chart methodologies have
been suggested, for example, the cumulative sum
(CUSUM) and exponentially weighted moving aver-
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age (EWMA) schemes. Both of these have excellent
small process average shift detection capabilities, as
described in Montgomery (1997). However, so far,
they do not seem to have achieved widespread appli-
cation beyond the chemical process industries. This
may be due to a perception that the required calcu-
lations are too complex for typical shop floor work
and/or to the usual organizational inertia associated
with procedural changes. Therefore, in this paper,
we consider variations of simpler traditional meth-
ods, which may be more acceptable to practitioners.

For pedagogical purposes, Derman and Ross
(1997) considered two additional schemes, each of
which used specially designated (lower than three-
sigma) control limits. In the first, an out-of-control
signal is given if two successive points fall outside
either of such control limits. In the second, an out-
of-control signal is obtained if any two of three suc-
cessive points fall beyond different (less than three-
sigma) control limits. Thus, in their first scheme,
given two successive points, an out of control signal
is obtained if either point is above an upper control
limit and the other is below a lower control limit, or
if both points are beyond one limit. In their second
scheme, an out-of-control signal is obtained if any
two of three successive points are above, or below,
either control limit. In brief, they showed that that
both schemes provided increased sensitivity to mod-
erate process average shifts over that of a standard
Shewhart control chart. Detailed comparisons will
be given in the next section.

Here, we consider two slightly different alterna-
tives to the Shewhart X chart. In the first, either
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two successive points above an upper control limit or
two successive points below a lower control limit are
needed to obtain an out-of-control signal. In the sec-
ond, the out-of control signal is given if two of three
successive points are above an upper control limit or
two of three are below a lower control limit. The
choice of such limits is discussed in the appendices.

Note that a “two-of-two” rule is the simplest runs-
rule requiring more than one observation to obtain
an out-of-control signal. Also, the “two-of-three”
rule is a standard runs-rule, except that the upper
and lower limits suggested here are different than the
usual “two-sigma” lines. Equally important for the
shop floor, both of these schemes are simple and easy
to implement. It will be shown that both are more
sensitive to process average changes than the stan-
dard Shewhart control chart (with no supplementary
tests) over an important range of such changes.

We evaluate all of the schemes by comparing their
average run length (ARL) profiles with that of the
Shewhart scheme. Recall that for a specified con-
trol chart scheme and a given process average shift,
an ARL is the expected number of points plotted on
the chart until an out-of-control signal is obtained.
An ARL profile is the sequence of ARL values as-
sociated with a sequence of process average shifts.
The ARL value associated with a zero-valued shift
is called the “in-control” value. It represents the ex-

pected number of points until a false out-of-control
signal is obtained.

For all calculations, we assume that the random
variables giving rise to the points plotted on a control
chart are independent and normal with a standard
deviation equal to one. The mean of the distribution
is zero when the process is in-control. The process
is considered to be out-of-control when the process
average is non-zero. Because the normal distribution
is symmetric about it’s mean, the ARL profile values
are the same for equal positive and negative process
average shifts. Changes in the process average, mea-
sured in standard deviation units, are assumed to be
sudden and sustained.

In brief, our results show that both of our alterna-
tive control schemes have better ARL profiles than
the standard Shewhart scheme for process average
shifts up to about 2.6σ. For larger process average
shifts, the Shewhart chart ARL profile is marginally
better. However, in many applications, either of our
two alternative schemes should be more useful than
the Shewhart chart, when the latter is used without
adjunct runs-rules.

Results

Table 1 contains ARL values for a standard Shew-
hart three-sigma X control chart for process average
shifts from zero (in-control) to out-of-control values

TABLE 1. ARL Profiles

Shewhart D-R:2 of 2 D-R:2 of 3 2 of 2 2 of 3

Control Limits

Shift ±3 ±1.9322 ±2.0698 ±1.7814 ±1.9307

0 370 370 370 370 370
0.2 308 313 308 277 271
0.4 200 204 193 150 142
0.6 120 116 107 79 73
0.8 72 65 58 44 40
1 44 37 33 26 23

1.2 28 23 20 16 15
1.4 18 15 13 11 10
1.6 12 10 8.9 7.8 7.1
1.8 8.7 7.2 6.6 5.9 5.4
2 6.3 5.5 5.1 4.6 4.3

2.2 4.7 4.4 4.1 3.8 3.6
2.4 3.6 3.6 3.4 3.2 3.1
2.6 2.9 3.1 3.0 2.8 2.8
2.8 2.4 2.8 2.7 2.6 2.5
3 2.0 2.5 2.5 2.4 2.4
4 1.2 2.1 2.1 2.0 2.0
5 1.0 2.0 2.0 2.0 2.0
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up to five-sigma. These ARL values are adjacent
to comparable values for the Derman-Ross (D-R)
and our two-of-two and the two-of-three runs-rules
schemes. The parameters used for each of these
schemes are also listed. The method used to de-
termine the values of the parameters is described in
the appendices. For process average shifts from 0 to
2.6 standard deviations, we see that the ARL val-
ues for both of our suggested rules (boldfaced) are
lower than those of either the Shewhart or the D-
R schemes. In addition, for process average shifts
greater than 2.6, the ARL profile advantages of the
Shewhart scheme are, at most equal to one, and for
many practical applications, negligible.

Although we have not included ARL profiles for
our rules, using respectively, rounded control limits
of 1.78 and 1.93, their values are essentially the same
as those shown in Table 1.

Concluding Remarks

In addition to its favorable ARL profile, the two-
of-three rule may be attractive to practitioners who
have been using such a rule as an adjunct to the
standard Shewhart control chart. However, despite
its slight advantage over the two-of-two rule, we find
the simplicity of the latter more appealing.

We note that our proposed control charts, in ARL
terms, are not as good as EWMA schemes. For ex-
ample, Saccucci and Lucas (1990) gave some ARL
profile values for an EWMA scheme with parame-
ters L = 2.9 and λ = 0.25. This scheme has an
in-control ARL value of 370 and ARL values of 41,
10 and 3.5 for process average shifts of 0.5, 1.0 and
2.0. These ARL values dominate those of our “two of
three” control chart of 101, 23 and 4.3 for the same
process average shifts.

To the best of our knowledge, a two of two rule
was first used by Hurwitz and Mathur (1992). They
used it to replace all three standard runs-rules in
an industrial setting because of operational difficul-
ties experienced in using three rules as adjuncts to
the standard Shewhart chart. They used two of two
control limits of 1.5σ, to approximately match the in-
control ARL (92) of the Shewhart chart with three
adjunct runs-rules. It is interesting that the rela-
tively high incidence of false out-of-control signals,
obtained from the original and from this replacement
scheme, was not reported as troublesome.

A two of two runs-rule was also used, by Klein

(1997), in the development and evaluation of some
Shewhart-EWMA X control chart schemes. In that
study, it was used as a device to reduce the vari-
ance of the distribution of the in-control run length.

Appendix A: Computational Details
For the Two of Two Scheme

The ARL profile for this scheme is to be compared
with that of a standard Shewhart chart. Hence,
appropriate upper and lower control limits have
to be found so that the in-control ARL value for
this scheme will be equal to 370.4, the same value
as that of the standard Shewhart control chart.

A control chart can be viewed as consisting of
three regions: one above the upper control limit,
one below the lower control limit and a center re-
gion between the two limits. We denote the prob-
ability of a single point falling in the upper re-
gion by pU , in the lower region by pL, and in the
center region by p. The values of these probabil-
ities determine the location of the control limits.

Consider an absorbing Markov chain with three
transient states {1, 2, 3}: state {1} representing no
points beyond either control limit, state {2} a point
above the upper control limit (UCL), and state {3} a
point below the lower control limit (LCL). The pro-
cess reaches the absorbing state {4} when two succes-
sive points are beyond just one of the control limits.

The transition probabilities of the chain are given
in Table A1, with transition probabilities pU , pL
and p as defined above. The expected value of
the first passage time from starting state 1 to the
absorbing (out-of-control) state 4 is equal to the
in-control average run length. The expected first
passage times (number of transitions) from each
of the states to the absorbing state can be deter-
mined by solving the linear system given below,
see, for example, Derman, Gelser, and Olkin (1973):

TABLE A1. Transition Probabilities for Markov
Chain With 3 Transient States

States at time t + 1

1 2 3 4

1 p pU pL 0
States 2 p 0 pL pU

at time t 3 p pU 0 pL
4 0 0 0 1
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M14 = 1 + (p)M14 + (pU)M24 + (pL)M34

M24 = 1 + (p)M14 + (pL)M34

M34 = 1 + (p)M14 + (pU)M24 .

Here, M14 is the expected first passage time from the
starting state {1} to the out-of-control, absorbing,
state {4}, that is, it is the average in-control run
length. One form of the solution, of this system, is
the following formula, due to Hurwitz and Mathur
(1992) for the average run length:

M14 =
1

1 − p− pU
1 + pU − pL

1 + pL

. (A1)

Since we use symmetrical control limits, setting pL =
pU = p∗ and noting that 1 − p = pL + pU = 2p∗, it
is easy to show that the above reduces to

M14 =
1 + p∗

2p∗
.

Now, set M14 = ARL = 370.4 to match the in-control
ARL of the standard Shewhart scheme, and solve for
p∗ to obtain p∗ = pL = pU = 0.037422. Given, pU =
pL = 0.037422, using standard Normal tables, the
lower control limit is −1.7814 and the upper control
limit is +1.7814.

For process average shift values of, say, b > 0, the
calculation of the out-of-control average run lengths
requires the recalculation of the probabilities pL and
pU , modified to account for the shift in the nor-
mal distribution relative to the above control limits.
Then Equation (A1) is used to determine the ARL
values associated with the shift. For example, for
a process average shift of b standard deviations, we
have

pL = Pr{X + b < −1.7814}

= Pr{X < −1.7814 − b} (A2)

where X ∼ N(0, 1). Thus, if b = 1, we have
pL = Pr{X < −2.7814} = 0.002706. Similarly,
pU = Pr{X > 0.7814} = 0.217278, and using, Equa-
tion (A1), the ARL, for b = 1, is 25.78.

Appendix B: Computational Details
For the Two of Three Scheme

The approach is the same as that used above ex-
cept that the absorbing Markov chain increases in
size to eight states {1, 2, . . . , 8} with the first seven
of them as transient (see Table B1). The states are:

State (OO) has two successive points between
both control limits;

State (OU) has a first point between both control
limits and the second above the UCL;

State (OL) has a first point between both control
limits and the second below the LCL;

State (UL) has its first point above the UCL and
its second below the LCL;

State (UO) has its first point above the UCL and
its second between the control limits;

State (LO) has its first point below the LCL and
its second between the control limits;

State (LU) has its first point below the LCL and
its second above the UCL;

State (OOC) the absorbing state, has two of three
points either below the LCL or above
the UCL.

As in our earlier calculation, the expected first pas-
sage times (number of transitions) from each of the
the absorbing state can be determined by states to
solving the linear system given below. The expected

TABLE B1. Transition Probabilities for Markov Chain With 7 Transient States

States at time t + 1

1 2 3 4 5 6 7 8

(OO) (OU) (OL) (UL) (UO) (LO) (LU) (OOC)

1 (OO) p pU pL
2 (OU) pL p pU
3 (OL) p pU pL

States 4 (UL) p pL + pU
at time t 5 (UO) p pL pU

6 (LO) p pU pL
7 (LU) p pL + pU
8 (OOC) 1
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value of the first passage time from starting state 1
to the absorbing (out-of-control) state 8 is equal to
the in-control average run length.

M18 = 1 + (p)M18 + (pU)M28 + (pL)M38

M28 = 1 + (p)M58 + (pL)M48

M38 = 1 + (p)M68 + (pU)M78

M48 = 1 + (p)M68 (B1)
M58 = 1 + (p)M18 + (pL)M38

M68 = 1 + (p)M18 + (pU)M28

M78 = 1 + (p)M58 .

Here, M18 is the average in-control run length.

To find the control limits to obtain an in-control
ARL = 370.4, we solve the above system with the
additional constraints: pL = pU, pL + pU + p = 1,
M18 = 370.4. The solution of this system is pU =
pL = 0.02676. From standard normal tables, we
find that the control limits are ±1.9307. New val-
ues of pL and pU resulting from process average
shifts are found using standard normal tables and
calculations using Equation (A2), etc. Then, we use
the new values of pL and pU to find the ARL as-
sociated with the process average shift specified, by
solving the above system of equations in Equation
(B1). For example for a process average shift of
b = 1 and a lower control limit of −1.9307, we have
pL = Pr{X + 1 < −1.9307}, where X ∼ N(0, 1).
Hence, pL = 0.001691. Similarly, pU = Pr{X >
0.9307} = 0.176004 and, solving the equations in
Equation (B1), the ARL, for b = 1, is 23.3747.

All ARL profile calculations were done using Mi-

crosoft Excel. The Derman-Ross schemes evaluations
were done by similar methods, except that we used
the explicit formulas for the ARL calculations given
in Derman and Ross (1997).
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