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Introduction

The quality of products and services is an important factor in most businesses today.
Regardless of whether the consumer is an individual, a corporation, a military defense
program, or a retail store, when the consumer is making purchase decisions, he or she is
likely to consider quality of equal importance to cost and on-time delivery. Consequently,
quality improvement has become a major concern to many corporations. This chapter is
about statistical methods that are useful in quality control and improvement.

There are various definitions of quality. The classical definition is that quality means
fitness for use. For example, you or I may purchase automobiles that we expect to be free
of manufacturing defects and that should provide reliable and economical transportation,
a retailer buys finished goods with the expectation that they are properly packaged and
arranged for easy storage and display, or a manufacturer buys raw material and expects to
process it with no rework or scrap. In other words, all consumers expect that the products
and services they buy will meet their requirements. Those requirements define fitness for
use. Quality or fitness for use is determined through the interaction of quality of design
and quality of conformance. By quality of design we mean the different grades or levels
of performance, reliability, serviceability, and function that are the result of deliberate
engineering and management decisions. By quality of conformance, we mean the
systematic reduction of variability and elimination of defects until every unit produced is
identical and defect-free. Because both of these activities involve reducing variability in
the key parameters that define fitness for use, a more modern definition of quality is
focused on reduction of unnecessary variability in these parameters.

Statistical methods play a vital role in quality improvement. Some applications are
outlined below:

1. In product design and development, statistical methods, including designed
experiments, can be used to compare different materials, components, or
ingredients, and to help determine both system and component tolerances. This
application can significantly lower development costs, reduce overall
development time, and decrease time to market.

2. Statistical methods can be used to determine the capability of a manufacturing
process. Statistical process control can be used to systematically improve the
capability of a process by reducing variability.

3. Experimental design methods can be used to characterize and optimize processes.
This can lead to higher yields and lower manufacturing costs.

4. Statistical methods can be used to characterize the performance of measurement
systems, which can lead to more informed decisions about product disposition.



5. Life testing provides reliability and other performance data about the product.
This can lead to new and improved designs and products that have longer useful
lives and lower operating and maintenance costs.

In this chapter we provide an introduction to the basic methods of statistical quality
control that, along with experimental design, form the basis of a successful quality-
improvement effort.

Methods of Statistical Quality Control

The field of statistical quality control can be broadly defined as those statistical and
engineering methods that are used in measuring, monitoring, controlling, and improving
quality. Statistical quality control is a relatively new field, dating back to the 1920s. Dr.
Walter A. Shewhart of the Bell Telephone Laboratories was one of the early pioneers of
the field. In 1924 he wrote a memorandum showing a modern control chart, one of the
basic tools of statistical process control. Dr. W. Edwards Deming and Dr. Joseph M.
Juran were instrumental in spreading statistical quality-control methods in the last 50
years.

Much of the interest in statistical quality control and improvement focuses on statistical
process monitoring and control and experimental design. Many companies have
extensive programs to implement these methods in their manufacturing, engineering, and
other business organizations. Online statistical process control is a powerful tool for
achieving process stability and improving capability through the reduction of variability.

It is customary to think of statistical process control (SPC) as a set of problem- solving
tools that may be applied to any process. The major tools of SPC are:

1. Histogram

2. Pareto chart

3. Cause-and-effect diagram

4. Defect-concentration diagram

5. Control charts

6. Scatter diagram

7. Check sheet

Some prefer to include the experimental design methods discussed in a previous chapter
as part of the SPC toolkit. We did not do so, because we think of SPC as an online
approach to quality improvement using techniques founded on passive observation of the
process, while design of experiments is an active approach in which deliberate changes
are made to the process variables. As such, designed experiments are often referred to as
offline quality control. Although the complete set of tools are important to the
implementation of SPC, in this chapter we focus on only control charts.

Introduction to Control Charts

Basic Principles

In any production process, regardless of how well-designed or carefully maintained it is,
a certain amount of inherent or natural variability will always exist. This natural



variability or "background noise" is the cumulative effect of many small, essentially
unavoidable causes. When the background noise in a process is relatively small, we
usually consider it an acceptable level of process performance. In the framework of
statistical quality control, this natural variability is often called a "stable system of
chance causes." A process that is operating with only chance causes of variation present
(some authors use the terminology “common causes”) is said to be in statistical control. 
In other words, the chance causes are an inherent part of the process.

Other kinds of variability may occasionally be present in the output of a process. This
variability in key quality characteristics usually arises from three sources: improperly
adjusted machines, operator errors, or defective raw materials. Such variability is
generally large when compared to the background noise, and it usually represents an
unacceptable level of process performance. We refer to these sources of variability that
are not part of the chance cause pattern as “assignable causes” (some authors use the 
terminology “special cause”). A process that is operating in the presence of assignable 
causes is said to be out of control.

Production processes will often operate in the in-control state, producing acceptable
product for relatively long periods of time. Occasionally, however, assignable causes will
occur, seemingly at random, resulting in a "shift" to an out-of-control state where a large
proportion of the process output does not conform to requirements. A major objective of
statistical process control is to quickly detect the occurrence of assignable causes or
process shifts so that investigation of the process and corrective action may be
undertaken before many nonconforming units are manufactured. The control chart is an
online process- monitoring technique widely used for this purpose.

Control charts may also be used to estimate the parameters of a production process and,
through this information, to determine the capability of a process to meet specifications.
The control chart can also provide information that is useful in improving the process.
Finally, remember, that the eventual goal of statistical process control is the reduction of
unnecessary or harmful variability in the process. Although it may not be possible to
eliminate variability completely, the control chart helps reduce it as much as possible.

A control chart is a graphical display of a quality characteristic that has been measured or
computed from a sample versus the sample number or time. Often, the samples are
selected at periodic intervals such as every hour. The chart contains a center line (CL)
that represents the average value of the quality characteristic corresponding to the in-
control state. (That is, only chance causes are present.) Two other horizontal lines, called
the upper control limit (UCL) and the lower control limit (LCL), are also placed on the
chart. These control limits are chosen so that if the process is in control, nearly all of the
sample points will fall between them. In general, as long as the points plot within the
control limits, the process is assumed to be in control, and no action is necessary.
However, a point that plots outside of the control limits is interpreted as evidence that the
process is out of control, and investigation and corrective action are required to find and
eliminate the assignable cause or causes responsible for this behavior.

Even if all the points plot within the control limits, if they behave in a systematic or
nonrandom manner, then this is an indication that the process is out of control. For
example, if 18 of the last 20 points plotted above the center line but below the upper



control limit and only two of these points plotted below the center line but above the
lower control limit, we would be very suspicious that something was wrong. If the
process is in control, the plotted points should have an essentially random pattern within
the control limits. Tests designed to find sequences or nonrandom patterns can be applied
to control charts as an aid in detecting out-of-control conditions. A particular nonrandom
pattern usually appears on a control chart for a reason, and if that reason can be found and
eliminated, process performance can be improved.

There is a close connection between control charts and hypothesis testing. Essentially, the
control chart is a test of the hypothesis that the process is in a state of statistical control.
A point plotting within the control limits is equivalent to failing to reject the hypothesis
of statistical control, and a point plotting outside the control limits is equivalent to
rejecting the hypothesis of statistical control.

We may give a general model for a control chart. Let W be a sample statistic that
measures some quality characteristic of interest, and suppose that the mean of W is

W and the standard deviation of W is W . Then the center line, the upper control limit,
and the lower control limit become:
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where k is the "distance" of the control limits from the center line, expressed in standard
deviation units. A common choice is k = 3. Dr. Walter A. Shewhart first proposed this
general theory of control charts, and control charts developed according to these
principles are often called Shewhart control charts.

The control chart is a device for describing exactly what is meant by statistical control; as
such, it may be used in a variety of ways. In many applications, it is used for online
process monitoring. That is, sample data are collected and used to construct the control
chart, and if the sample values of the sample statistic W fall within the control limits and
do not exhibit any systematic pattern, we say the process is in control at the level
indicated by the chart. Note that "sigma" refers to the standard deviation of the statistic
plotted on the chart and not the standard deviation of the quality characteristic. Note that
we may be interested here in determining both whether the past data came from a process
that was in control and whether future samples from this process indicate statistical
control.

The most important use of a control chart is to improve the process by reducing
variability. Generally, most processes do not operate in a state of statistical control so the
routine and attentive use of control charts will identify assignable causes. If these causes
can be eliminated from the process, variability will be reduced and the process will be
improved. However, the control chart will only detect assignable causes. Management,
operator, and engineering action will usually be necessary to eliminate the assignable
cause. An out-of-control action plan for responding to control chart signals is vital. In
identifying and eliminating assignable causes, it is important to find the underlying root
cause of the problem and to attack it. A cosmetic solution will not result in any real, long-



term process improvement. Developing an effective system for corrective action is an
essential component of an effective SPC implementation.

We may also use the control chart as an estimating device. That is, from a control chart
that exhibits statistical control, we may estimate certain process parameters, such as the
mean, standard deviation, and fraction nonconforming or fallout. These estimates may
then be used to determine the capability of the process to produce acceptable products.
Process capability studies have considerable impact on many management decision
problems that occur over the product cycle, including make-or-buy decisions, plant and
process improvements that reduce process variability, and contractual agreements with
customers or suppliers regarding product quality.

Control charts may be classified into two general types. Many quality characteristics can
be measured and expressed as numbers on some continuous scale of measurement. In
such cases, it is convenient to describe the quality characteristic with a measure of central
tendency and a measure of variability. Control charts for central tendency and variability
are collectively called variables control charts. The X control chart is the most widely
used chart for monitoring central tendency, whereas charts based on either the sample
range or the sample standard deviation are used to control process variability. Many
quality characteristics are not measured on a continuous scale or even a quantitative scale.
In these cases, we may judge each unit of product as either conforming or nonconforming
on the basis of whether or not it possesses certain attributes, or we may count the number
of nonconformities (defects) appearing on a unit of product. Control charts for such
quality characteristics are called attributes control charts.

Design of a Control Chart

To illustrate these ideas, we give a simplified example of a control chart. In the
manufacture of automobile engine piston rings, the inside diameter of the rings is a
critical quality characteristic. The process mean inside ring diameter is 74 mm, and it is
known that the standard deviation of ring diameter is 0.01 mm. Every hour a random
sample of five rings is taken, the average ring diameter of the sample is computed, and is
plotted on the chart. Because this control chart utilizes the sample average or sample
mean to monitor the process mean, it is called an X control chart.

Consider how the control limits are determined. Since the process average is 74 mm, and
the process standard deviation is 0.01 mm if samples of size n = 5 are taken, the standard
deviation of the sample average X is 0.01/ 5 0.0045X n    . Therefore, if the
process is in control with a mean diameter of 74 mm, by using the central limit theorem
to assume that X is approximately normally distributed, we would expect approximately
99.73 percent of the sample mean diameters X to fall between 74 + 3(0.0045) and 74 -
3(0.0045). Therefore, the upper and lower control limits become UCL = 74.0135 and
LCL = 73.9865. These are the 3-sigma control limits referred to earlier.

Note that the use of 3-sigma limits implies that the type I error level for the control chart
is approximately 0.0027; that is, the probability that the point plots outside the control
limits when the process is in control is 0.0027. The width of the control limits is inversely
related to the sample size n for a given multiple of sigma. Choosing the control limits is
equivalent to setting up the critical region for testing the null hypothesis that the process



mean is equal to 74 versus a two-sided alternative. Essentially, the control chart tests this
hypothesis repeatedly at different points in time.

In designing a control chart, we must specify both the sample size to use and the
frequency of sampling. In general, larger samples will make it easier to detect small shifts
in the process. When choosing the sample size, we must keep in mind the size of the shift
that we are trying to detect. If we are interested in detecting a relatively large process
shift, then we use smaller sample sizes than those that would be employed if the shift of
interest were relatively small. We must also determine the frequency of sampling. The
most desirable situation from the point of view of detecting shifts would be to take large
samples very frequently; however, this is usually not economically feasible. The general
problem is one of allocating sampling effort. That is, either we take small samples at
short intervals or larger samples at longer intervals. Current industry practice tends to
favor smaller, more frequent samples, particularly in high-volume manufacturing
processes, or where a great many types of assignable causes can occur. Furthermore, as
automatic sensing and measurement technology develops, it is becoming possible to
greatly increase frequencies. Ultimately, every unit can be tested as it is manufactured.
This capability will not eliminate the need for control charts because the test system will
not prevent defects. The increased data will increase the effectiveness of process control
and improve quality.

Rational Subgroups

A fundamental idea in the use of control charts is to collect sample data according to
what Shewhart called the rational subgroup concept. Generally, rational subgroups or
samples should be selected so that to the extent possible, the variability of the observa-
tions within a subgroup should include all the chance or natural variability and exclude
the assignable variability. Then, the control limits will represent bounds for all the chance
variability and not the assignable variability. Consequently, assignable causes will tend to
generate points that are outside of the control limits, while chance variability will tend to
generate points that are within the control limits.

When control charts are applied to production processes, the time order of production is a
logical basis for rational subgrouping. Even though time order is preserved, it is still
possible to form subgroups erroneously. If some of the observations in the subgroup are
taken at the end of one 8-hour shift and the remaining observations are taken at the start
of the next 8-hour shift, then any differences between shifts might not be detected. Time
order is frequently a good basis for forming subgroups because it allows us to detect
assignable causes that occur over time.

Two general approaches to constructing rational subgroups are used. In the first approach,
each subgroup consists of units that were produced at the same time (or as closely
together as possible). This approach is used when the primary purpose of the control
chart is to detect process shifts. It minimizes variability due to assignable causes within a
sample, and it maximizes variability between samples if assignable causes are present. It
also provides better estimates of the standard deviation of the process in the case of
variables control charts. This approach to rational subgrouping essentially gives a
"snapshot" of the process at each point in time where a sample is collected.



In the second approach, each sample consists of units of product that are representative of
all units that have been produced since the last sample was taken. Essentially, each
subgroup is a random sample of all process output over the sampling interval. This
method of rational subgrouping can be used when the control chart is employed to make
decisions about the acceptance of all units of product that have been produced since the
last sample. In fact, if the process shifts to an out-of-control state and then back in control
again between samples, the first method of rational subgrouping defined above can be
ineffective against these types of shifts, and so the second method must be used.

When the rational subgroup is a random sample of all units produced over the sampling
interval, considerable care must be taken in interpreting the control charts. If the process
mean drifts between several different levels during the interval between samples, the
range of the observations within a sample may be relatively large. It is the within- sample
variability that determines the width of the control limits on an X chart, so this practice
will result in wider limits on the chart. This makes it harder to detect shifts in the mean.
In fact, we can often make any process appear to be in statistical control just by stretching
out the interval between observations in the sample. It is also possible for shifts in the
process average to cause points on a control chart for the range or standard deviation to
plot out of control, even though no shift in process variability has taken place.

There are other bases for forming rational subgroups. For example, suppose a process
consists of several machines that pool their output into a common stream. If we sample
from this common stream of output, it will be very difficult to detect whether or not some
of the machines are out of control. A logical approach to rational subgrouping in this
scenario is to apply control chart techniques to the output for each individual machine.
Sometimes this concept needs to be applied to different heads on the same machine,
different workstations, different operators, and so forth.

'The rational subgroup concept is very important. The proper selection of samples
requires careful consideration of the process, with the objective of obtaining as much
useful information as possible from the control chart analysis.

Analysis of Patterns on Control Charts

A control chart may indicate an out-of-control condition when one or more points fall
beyond the control limits, or when the plotted points exhibit some nonrandom pattern of
behavior. If the points plotted on the chart are truly random, we should expect a
relatively even distribution of them above and below the center line. A type of
nonrandom pattern often observed on a control chart is a run. In general, we define a run
as a sequence of observations of the same type. In addition to runs up and runs down, we
could define the types of observations as those above and below the center line,
respectively, so that two points in a row above the center line would be a run of length 2.
A run of length 8 or more points has a very low probability of occurrence in a random
sample of points. Consequently, any type of run of length 8 or more is often taken as an
indication that some type of disturbance or assignable cause is present.

The problem is one of pattern recognition, that is, recognizing systematic or nonrandom
patterns on the control chart and identifying the reason for this behavior. The ability to
interpret a particular pattern in terms of assignable causes requires experience and



knowledge of the process. That is, we must not only know the statistical principles of
control charts, but we must also have a good understanding of the process.

The Western Electric Handbook (1956) suggests a set of decision rules for detecting
nonrandom patterns on control charts. Specifically, the Western Electric rules would
conclude that the process is out of control if either

1. One point plots outside 3-sigma control limits.

2. Two out of three consecutive points plot beyond a 2-sigma limit.

3. Four out of five consecutive points plot at a distance of 1-sigma or beyond from
the center line.

4. Eight consecutive points plot on one side of the center line.

These rules very effective for enhancing the sensitivity of control charts. Rules 2 and 3
apply to one side of the center line at a time. That is, a point above the upper 2-sigma
limit followed immediately by a point below the lower 2- sigma limit would not generate
an out-of-control signal. Because the 1-, 2-, and 3-sigma bands form zones on the control
chart, the Western Electric rules are sometimes called the zone rules.

Sensitizing rules such as the Western Electric rules for control charts are not without
controversy. While they do increase sensitivity to small shifts in process parameters,
they also greatly increase the risk of a false alarm. When control charts are used in the
initial stage of an SPC implementation and the processes are almost always out of control,
this is less of an issue than when control charts are used for monitoring a relatively stable
process. When the process is operating in control, sensitizing rules can result in many
unnecessary false alarms and can be disruptive to both manufacturing and other ongoing
process improvements efforts. Any application of supplemental rules should be
accompanied by specific out of control action plans indicating how to respond to specific
rule violations. Many computer software packages for SPC turn the Western Electric
rules (and others as well) on routinely, regardless of the application situation. For more
information on sensitizing rules and control charts, see Montgomery (2001).

X and R Control Charts

When dealing with a quality characteristic that can be expressed as a measurement, it is
customary to monitor both the mean value of the quality characteristic and its variability.
Control over the average quality is maintained by the control chart for averages, usually
called the X chart. Process variability can be controlled by either a range chart (R chart)
or a standard deviation chart (S chart), depending on how the population standard
deviation is estimated. We will discuss only the R chart.

In general, the process mean and standard deviation are unknown and are estimated on
the basis of preliminary samples, taken when the process is thought to be in control. We
recommend the use of at least 20 to 25 preliminary samples. Suppose m preliminary
samples are available, each of size n. Typically, n will be 4, 5, or 6; these relatively small
sample sizes are widely used in practice and often arise from the construction of rational
subgroups. Let the sample mean for the ith sample be iX . Then we estimate the mean of
the population by the grand mean
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Thus, we may take X as the center line on the X control chart.

We may estimate the standard deviation  from either the sample standard deviation or
the range of the observations within each sample. Since it is more frequently used in
practice, we confine our discussion to the range method. The sample size is relatively
small, so there is little loss in efficiency in estimating a from the sample ranges. The
relationship between the range R of a sample from a normal population with known
parameters and the standard deviation of that population is needed. Since R is a random
variable, the quantity W = R/, called the relative range, is also a random variable. The
parameters of the distribution of W have been determined for any sample size n. The
mean of the distribution of W is called d2, and the standard deviation of W is called d3.
Therefore,
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Let Ri be the range of the ith sample and let
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be the average range. Thus R is an estimate of R and an estimate of the process
standard deviation is
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Therefore, the upper and lower control limits and the center line of an X control chart are
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The constant A2 is tabulated in many statistical quality control texts; for example, see
Montgomery (2001).

The parameters of the R chart may be easily determined. Since
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we may write the R chart parameters as
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The constant D3 and D4 are tabulated in many statistical quality control texts; for
example, see Montgomery (2001).

When preliminary samples are used to construct limits for control charts, these limits are
customary treated as trial values. Therefore, the m sample means and ranges should be
plotted on the appropriate charts, and any points that exceed the control limits should be
investigated. If assignable causes for these points are discovered, they should be
eliminated and new limits for the control charts determined. In this way, the process may
be eventually brought into statistical control and its inherent capabilities assessed. Other
changes in process centering and dispersion may then be contemplated. Also, we often
study the R chart first because if the process variability is not constant over time the
control limits calculated for the X chart can be misleading.

An Example of X and R Control Charts

A component part for a jet aircraft engine is manufactured by an investment casting
process. The vane opening on this casting is an important functional parameter of the part.
We will illustrate the use of X and R control charts to assess the statistical stability of this
process. Table 1 presents 20 samples of five parts each. The values given in the table
have been coded by using the last three digits of the dimension; that is, 31.6 should be
0.50316 inch. The quantities X = 33.3 and R = 5.8 are shown at the foot of Table 1. The
value of A2 for samples of size 5 is 0.577. Then the trial control limits for the X chart are

2 33.32 0.577(5.8) 33.32 3.35
36.67
29.97

X A R
UCL
LCL
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For the R chart, the trial control limits are
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The control charts, which were generated by Minitab, are shown in Figure 1. Notice that
samples 6, 8, 11, and 19 are out of control on the X chart and sample 9 is out of control
on the R chart. If assignable causes can be determined for these points, then we can
discard the data from these five samples and recalculate or revise the control limits.
Suppose that these assignable causes can be found. The new control charts with the
revised limits computed without samples 6, 8, 9, 11, and 19 are shown in Figure 2.

Table 1 Vane Opening Measurements



x1 x2 x3 x4 x5 Average Range
33 29 31 32 33 31.6 4
33 31 35 37 31 33.4 6
35 37 33 34 36 35.0 4
30 31 33 34 33 32.2 4
33 34 35 33 34 33.8 2
38 37 39 40 38 38.4 3
30 31 32 34 31 31.6 4
29 39 38 39 39 36.8 10
28 33 35 36 43 35.0 15
38 33 32 35 32 34.0 6
28 30 28 32 31 29.8 4
31 35 35 35 34 34.0 4
27 32 34 35 37 33.0 10
33 33 35 37 36 34.8 4
35 37 32 35 39 35.6 7
33 33 27 31 30 30.8 6
35 34 34 30 32 33.0 5
32 33 30 30 33 31.6 3
25 27 34 27 28 28.2 9
35 35 36 33 30 33.8 6
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Figure 1. Minitab X and R Control Charts for the Vane Opening Data
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Figure 2. Minitab X and R Control Charts for the Vane
Opening Data with Revised Control Limits

Notice that in the revised control chart in Figure 2 we have treated the first 20 samples as
estimation data with which to establish a set of control limits that we hope will be
appropriate for monitoring future production. As each new sample becomes available,
the values of X and R should be computed and plotted on the control charts.

It is desirable to revise the control limits occasionally, even if the process remains stable.
Some organizations mandate that control limits should be revised no less frequently that
quarterly, even for a stable process. Control limits should always be revised when either
process improvements or significant process changes are made.

Control Charts for Individual Measurements

In many situations, the sample size used for process monitoring and control is n = 1; that
is, the sample consists of an individual unit. Some examples of these situations are as
follows.

1. Automated inspection and measurement technology is used, and every unit
manufactured is analyzed.

2. The production rate is very slow, and it is inconvenient to allow sample sizes of n
> 1 to accumulate before being analyzed.

3. Repeat measurements on the process differ only because of laboratory or analysis
error, as in many chemical processes.

4. In process plants, such as papermaking, measurements on some production units
will differ very little and produce a standard deviation that is much too small if
the objective is to monitor the variability in the measured characteristic between
units.



In such situations, the control chart for individuals is potentially useful. The control chart
for individuals uses the moving range of two successive observations to estimate the
process variability. The moving range is defined as 1| |i i iMR X X   . Letting MR be the
average of the moving ranges, an estimate of is

2

ˆ
1.128

MR MR
d

  (8)

because d2 = 1.128 when two consecutive observations are used to calculate a moving
range. It is also possible to establish a control chart on the moving range using D3 and D4
for n = 2. The parameters for the control chart for individuals are defined as follows:
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Table 2 shows 20 observations on concentration for the output of a chemical process. The
observations are taken at one-hour intervals. If several observations are taken at the same
time, the observed concentration reading will differ only because of measurement error.
Since the measurement error is small, only one observation is taken each hour. To set up
the control chart for individuals, note that the sample average of the 20 concentration
readings is X = 99.1 and that the average of the moving ranges of two observations
shown in the last column of Table 2 is 2.59. To set up the moving range chart, we note
that D3 = 0 and D4 = 3.267 for n = 2. Therefore, the moving-range chart has center line
2.59, LCL = 0, and UCL = (3.267)(2.59) = 8.46. The control chart is shown as the lower
control chart in Fig. 3. This control chart was constructed by Minitab. Because no points
exceed the upper control limit, we may now set up the control chart for individual
concentration measurements. Since the moving range of n = 2 observations is used, then
for the data in Table 2 we have

99.1 2.6596(2.59) 105.99
99.1 2.6596(2.59) 92.21

UCL
LCL

  
  

The control chart for individual concentration measurements is shown as the upper
control chart in Fig. 3. There is no indication of an out-of-control condition.

The chart for individuals can be interpreted much like an ordinary X control chart. A
shift in the process average will result in one or more points outside the control limits, or
a pattern consisting of a run on one side of the center line. Some care should be exercised
in interpreting patterns on the moving-range chart. The moving ranges are correlated, and
this correlation may often induce a pattern of runs or cycles on the chart. The individual
measurements are assumed to be uncorrelated, however, and any apparent pattern on the
individuals' control chart should be carefully investigated.



Table 2 Concentration Data for Individuals Control Chart

Observation Concentration Observation Concentration

1 102.0 11 101.3

2 94.8 12 98.7

3 98.3 13 101.1

4 98.4 14 98.4

5 102.0 15 97.0

6 98.5 16 96.7

7 99.0 17 100.3

8 97.7 18 101.4

9 100.0 19 97.2

10 98.1 20 101.0
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Figure 3 Individuals and Moving Range Control Charts for Chemical Concentrations

The control chart for individuals is very insensitive to small shifts in the process mean.
For example, if the size of the shift in the mean is one standard deviation, the average
number of sample points that must be plotted to detect this shift is 43.9. While the



performance of the control chart for individuals is much better for large shifts, in many
situations the shift of interest is not large and more rapid shift detection is desirable. In
these cases, we recommend the cumulative sum (CUSUM) control chart or the
exponentially weighted moving-average (EWMA) chart. These charts are briefly
discussed in a subsequent section. See Montgomery (2001) for more details.

The control chart for individuals is very sensitive to the normality assumption. Figure 4
shows the normal probability plot of the chemical process concentration data in table 2.
There are no obvious problems with the normality assumption. However, note that even
small departures from normality such as a true distribution that is slightly skewed or has
slightly heavier tails than the normal will seriously affect the performance of the control
chart, resulting in a higher than advertised rate of false alarms. The exponentially
weighted moving average control chart is a better alternative in these situations. More
details on this aspect of the individuals control chart are in Montgomery (2001).
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Figure 4. Normal probability Plot of the Chemical Process Concentration Data

Process Capability

It is usually necessary to obtain some information about the capability of the process; that
is, the performance of the process when it is operating in control. The histogram is
helpful in assessing process capability. The histogram for all 20 samples from the vane-
manufacturing process is shown in Fig. 5. The upper and lower specifications on vane
opening are 0.5020 and 0.5040 inches. In terms of the coded data, the upper specification
limit is USL = 40 and the lower specification limit is LSL = 20. The general impression
from examining this histogram is that the process is barely capable of meeting the
specifications and that it is operating slightly off-center.
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Figure 5. Histogram of the Vane Opening Measurements

Figure 6 presents a normal probability plot of the vane opening measurements. The plot
indicates that assuming normality for the distribution of vane opening measurements is
not unreasonable.

Notice that the observations from the samples that were likely taken when the process is
out of control have been included in both Figures 5 and 6. Inferences about process
capability for an out of control process are potentially problematic, because the very
nature of an out of control is that the process is not predictable. Inferences about process
capability are essentially predictions about future process performance, or about the
quality level of material that has been shipped to customers. If the process is not in
control, then these predictions may be very unreliable.

Many organizations express process capability in terms of the process capability ratio

6p
USL LSL

C



 (10)

Notice that the numerator of this ratio is the width of the specifications and that the
denominator can be thought of as the natural spread in the process. Ideally, this ratio
should exceed unity. For the vane opening manufacturing process,

40 20
1.55

6 6(2.15)p
USL LSL

C

 

  

where we have used the estimate of process standard deviation obtained from the R chart
in Figure 2, 2ˆ / 5.0 / 2.326 2.15.R d   The process capability ratio has a simple
interpretation, because 1/ pC is the fraction of the tolerance band that the process uses.



Notice that if the vane opening manufacturing process was in statistical control, we
estimate that it uses about (1/1.55)100 = 64.5% of the available tolerance.
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Figure 6. Normal Probability Plot for the Vane Opening Measurements

The process capability ratio pC does not take process centering into account, so it really
reflects only the potential capability that might be achieved by a perfectly centered
process. If the process is not perfectly centered, then a measure of actual process
capability is often used. This ratio, called pkC , is defined as follows:

min ,
3 3pk

USL LSL
C

 
 
     

(11)

Essentially, pkC is a one-sided ratio that measures how close the process mean is to the
nearest specification limit. For the vane opening manufacturing process, if we consider
the only the in control samples, an estimate of the process mean is 33.19X  , so the
process is indeed off-center. Therefore pkC is

40 33.19 33.19 20
min 1.06, 2.04 1.06

3(2.15) 3(2.15)pkC
  

    
 

Notice that the actual capability is much less than the potential capability. To achieve the
potential capability, the process will have to be in statistical control and the mean will
have to be adjusted so that it is closer to the target or nominal dimension.



Montgomery (2001) presents a table reporting the parts per million defective achieved by
a normally distributed process in statistical control as a function of the process capability
ratio. The assumptions of normality and stability are essential; indeed it is well known
that even minor deviation from normality renders predictions of process defective highly
inaccurate.

A six-sigma process is defined as one that has the process mean located no closer that six
standard deviations from the nearest specification limit. Consequently, a six-sigma
process has a process capability ratio pkC that exceeds 2.

Attribute Control Charts

Often it is desirable to classify a product as either defective or nondefective on the basis
of comparison with a standard. This classification is usually done to achieve economy
and simplicity in the inspection operation. For example, the diameter of a ball bearing
may be checked by determining whether it will pass through a gauge consisting of
circular holes cut in a template. This kind of measurement would be much simpler than
directly measuring the diameter with a device such as a micrometer. Control charts for
attributes are used in these situations.

Attribute control charts often require a considerably larger sample size than do their
variable measurements counterparts. In this section, we will present the fraction defective
control chart, or P chart. Sometimes the P chart is called the control chart for fraction
nonconforming. We will also discuss control charts for defects.

Suppose that D is the number of defective units in a random sample of size n. We assume
that D is a binomial random variable with unknown parameter p. The fraction defective
control chart is defined as follows:
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(12)

Values of the sample fraction defective ˆ /p D n are plotted on the chart. When the true
process fraction defective p is unknown, it must be estimated from preliminary data. If m
preliminary samples are available and if pi is the sample fraction defective for each
sample, then

1
(1/ )

m
ii

p m p


  replaces p in equation (12). Note that this control chart is

based on the normal approximation to the binomial distribution.

It is sometimes necessary to monitor the number of defects in a unit of product. Let the
sample consist of n units and suppose that there are a total of C defects in the sample.
Then U = C/n is the average number of defects per unit. The control chart for defects per
unit is defined as follows:
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CL U
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n
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 

(13)

When U is unknown, it may be estimated from preliminary samples. If there are m of
these preliminary samples and Ui, i =1,2, …, m are the observed number of defects per
unit in these samples, then

1
(1/ )

m
ii

U m U


  replaces U in equation 13.

Many control chart computer programs produce a control chart of C, the total number of
observed defects in the sampled units. This variation of the U chart is called the C chart.

Both the U and the C chart assume that the number of defects observed in a unit follows
the Poisson distribution. These charts can produce erroneous results if the distribution of
the number of defects is not Poisson. Situations where defects occur in clusters or groups
often are symptoms of violation of the Poisson assumption. In the Poisson distribution
the mean and the variance are the same, and this information can sometimes be used to
provide a rough check of the validity of the Poisson assumption. When the sample
variance greatly exceeds the sample average in count data, the Poisson assumption may
be inappropriate. In practice, we often find that the variance is considerable greater than
the mean. This overdispersion can lead to control limits that are much wider than they
should be and greatly impacts the usefulness of the control chart. Consult Montgomery
(2001) for more details.

Control Chart Performance

Specifying the control limits is a critical decision in designing a control chart. By moving
the control limits further from the center line, we decrease the risk of a type I error; that is,
the risk of a point falling beyond the control limits, indicating an out-of-control condition
when no assignable cause is present. However, widening the control limits will also
increase the risk of a type II error; that is, the risk of a point falling between the control
limits when the process is really out of control. If we move the control limits closer to the
center line, the opposite effect is obtained: The risk of type I error is increased, while the
risk of type II error is decreased. The control limits on a Shewhart control chart are
customarily located a distance of plus or minus three standard deviations of the variable
plotted on the chart from the center line. These limits are called 3-sigma control limits.

We may evaluate decisions regarding sample size and sampling frequency through the
average run length (ARL) of the control chart. Essentially, the ARL is the average
number of points that must be plotted before a point indicates an out-of-control condition.
For any Shewhart control chart, the ARL can be calculated from the mean of a geometric
random variable (for details, see Montgomery 2001). Suppose that p is the probability
that any point exceeds the control limits. Then for an X control chart with three-sigma
limits we have p = 0.0027 as the probability that a single point exceeds the limits when
the process is in control, so the in control ARL is



1 1
ARL= 370

0.0027p
 

So on the average, a false alarm will be generated every 370 points. To find the out of
control ARL, or the number of points plotted on the average to signal when a shift has
occurred, we need to find the probability p of a point plotting outside the control limits.
For example, if the process mean shifts by three standard deviations of the variable
plotted on the control chart then it is straightforward to show that p = 0.5. Therefore, the
out of control ARL is ARL = 1/0.5 = 2.

Studies of the ARL performance of Shewhart control charts reveal that they are relatively
insensitive to small to moderate shifts of magnitude of up to about 2 sigma. That is, their
out of control ARLs are relatively large. For larger shifts, they are quite effective; note
that for the three-sigma shift above it only requires two periods on the average to detect
the shift. A brief table of ARL values follows.

Shift size,

n

0 0.5 1 1.5 2 3

ARL 370 155.2 43.9 15 6.3 2

Because Shewhart control charts are relative insensitive to small to moderate size shifts,
interest often focuses on control charts that perform better in the detection of these
smaller shifts. Two such procedures are the cumulative sum control chart and the
exponentially weighted moving average control chart. These procedures are often very
effective alternatives to using a Shewhart chart with additional sensitizing rules because
they can detect small shifts just as quickly yet they do not suffer increased rates of false
alarms.

Cumulative Sum and Exponentially Weighted Moving Average Control Charts

Two very effective alternatives to the Shewhart control chart are the cumulative sum (or
CUSUM) control chart and the Exponentially Weighted Moving Average (or EWMA)
control chart. These charts have much better performance (in terms of ARL) for detecting
small shifts than the Shewhart chart, but do not cause the in-control ARL to drop
significantly. This section will outline the basic procedures for using these control charts.

The CUSUM

The CUSUM chart plots the cumulative sums of the deviations of the sample values from
a target value. For example, suppose that samples of size 1n  are collected, and jX is

the average of the jth sample. Then if 0is the target for the process mean, the CUSUM
control chart is formed by plotting the quantity

0
1

( )
i

i j
j

C X 


  (14)



against the sample number.. Now, Ci is called the cumulative sum up to and including the
ith sample. Because they combine information from several samples, cumulative sum
charts are more effective than Shewhart charts for detecting small process shifts.
Furthermore, they are particularly effective with samples of n = 1. This makes the
cumulative sum control chart a good candidate for use in the chemical and process
industries where rational subgroups are frequently of size 1, as well as in discrete parts
manufacturing with automatic measurement of each part.

If the process remains in control at the target value, the cumulative sum defined in
equation 14 should fluctuate around zero. However, if the mean shifts upward then an
upward or positive drift will develop in the cumulative sum statistic. Conversely, if the
mean shifts downward, then a downward or negative drift in the CUSUM will develop.
Therefore, if a trend develops in the plotted points either upward or downward, we should
consider this as evidence that the process mean has shifted.

Most practical applications of the CUSUM employ a tabular procedure in which the
CUSUM statistic in equation 14 is accumulated as two one-sided statistics defined as
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0 1

max[0, ( ) ]

max[0, ( ) ]
i i i

i i i
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
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
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

   

   
(15)

where we usually take 0 0 0C C   . The constant K in equation 15 is called the
reference value for the CUSUM, and it is usually selected to be about one-half of the
magnitude of the shift that we wish to detect. If either of the one-sided CUSUM statistics
in equation 15 exceeds a decision interval H the process is considered to be out of control.

The CUSUM is much more responsive to shifts that is the Shewhart control chart. The
table below shows the ARL values for a CUSUM with 0.5 and 5X XK H   , values
that are widely used in practice.

Shift, in
multiples
of X

0 0.25 0.50 0.75 1.00 1.50 2.0 2.50 3.00 4.00

ARL 465 139 38 17 10.4 5.75 4.01 3.11 2.57 2.01

Notice that for detecting a one-sigma shift in the mean (with n = 1) the CUSUM ARL is
10.4, whereas for the individuals control chart it is 43.9. Generally, the CUSUM is much
more effective than the Shewhart chart for shifts up to about two standard deviations, and
roughly comparable for larger shifts. On the other hand, the CUSUM is more difficult to
use in bringing an out of control process into a state of statistical control because patterns
on the CUSUM are not interpretable (because successive CUSUM values are correlated),
and interpretation or analysis of patterns is often very useful in identifying assignable
cause when control charts are first applied.

Figure 7 presents the Minitab results of applying a CUSUM to the chemical
concentration data in Table 2. We have assumed that the process target is 0 99 . This



type of display is usually called a CUSUM status chart. Notice that the process is in
control.
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Figure 7. A CUSUM Status Chart for the Chemical Process Concentration Data

Because the CUSUM is very effective at detecting small process shifts and in detecting
small departures from a desired target, and because it works very well with individual
measurements, it has been widely deployedin the chemical and process industries.  It’s 
ise in discret parts manufacturing is growing rapidly.

There are many important variations of the CUSUM. Some of these include a fast initial
response or headstart feature that allows more rapid detection of a process that is still off-
target following an adjustment, combined CUSUM-Shewhart schemes that improve
detection of large shifts, and CUSUMs for a variety of sample statistics, including counts
or time between events. For discussion of some of these procedures, see Montgomery
(2001).

The EWMA

The Exponentially Weighted Moving Average (EWMA) defined as

1 0 0(1 ) with 0 1,i i iZ X Z Z         (16)



can be used as the basis of a control chart. The procedure consists of plotting the EWMA
statistic Zi versus the sample number on a control chart with center line 0CL  and
upper and lower control limits at
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(17)

The EWMA control chart is very flexible. For large values of the parameter it closely
mimics the performance of a Shewhart chart, while for smaller values of it performs
like the CUSUM. It is usually applied in situations where CUSUMs are appropriate;
namely, the detection of small shifts is of interest. The design parameters are the width
of the control limits k and the EWMA parameter . Montgomery gives a table of
recommended values for these parameters to achieve certain average run length
performance.

Figure 8 is the Minitab EWMA control chart applied to the chemical process
concentration data in Table 2. In constructing this chart we have used a target value of 99
for the process mean and =0.1 and k = 2.8, as these values result in ARL performance
that closely matches the CUSUM with 0.5 and 5X XK H   . The process is in
control.
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Figure 8 An EWMA Control Chart for the Chemical Process Concentration Data

The EWMA control chart is an excellent alternative to the CUSUM, as it has comparable
ARL performance and many practitioners feel that it is easier to implement and use. It



can also incorporate a headstart or fast initial response feature, it can be adapted for use
with other sample statistics (such as variances), and it can be applied to Poisson counts.
The EWMA has also been adapted to monitor processes with autocorrelated data, and
because of the near-optimal one-step-ahead predictor features of the EWMA, it is often
the basis of many types of feedback control schemes that are widely used for process
adjustment. For more details on these aspects of the EWMA, see Montgomery (2001).
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