

系統可靠度實驗室 System Reliability Lab. http://campusweb.yuntech.edu.tw/~gre/index.htm

Burn-in policies for products having dormant states

指導教授 : 童超塵

作者 : Shaomin Wu, Derek Clements-Croome

出處 : Reliability Engineering And System Safety

Accepted : 12 June 2002

報告人 : 鍾喆文

- Abstract
- Literature review
- Assumption and denotations
- Total mean cost model
- A numerical example
- Conclusions

Keywords

Burn-in

- Warranty policy
- Failure pattern
- Reliability
- Cost

Abstract

- 很多系統有所謂的休眠期,在這段期間系統是無運作的。舉例如建築物內的服務性產品,在建築物建造完成並交付使用時,產品才執行運作。對於此類產品的保固區間指的是從安裝產品至保固期結束為止。
- 保固指的是在保證期間內正常使用產品的狀態下對買 方所做預先指定的補償。是一種產品品質與可靠度的 指標,也是提升公司聲譽的工具。
- 此篇研究對此類產品考慮兩個預燒策略,也對此類產品有不同的預燒成本與效果。
- 國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

Literature review

作者	年代	結果與發現
Ward H, Christer AH	2005	保固策略對產品在開發階段的總壽命週期有重要的影響。
Yun WY, Lee YW	2002	
Kim CS, Djamaludin I, Murthy DNP	2004	保固策略在產品運作與維修階段的總壽命週期有重要的影響。
Rai B, Singh N	2005	保固策略主要應用於製造性工廠與資訊技術性工廠的執行。
Attardi L, Guida M, Pulcini G	2005	
Kimura M, Toyota T, Yamada S	1999	

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

作者	年代	結果與發現				
Kuo W, Chien WTK, Kim T	1998	預燒測試是對物品給予一段時間的測試以 達到可服務的試驗。				
Kim KO, Kuo W	2005 \ 2003	對系統做預燒測試的績效。				
Kwon YI, Keats JB	2002	對個別性產品或元件做預燒測試的績效。				
Tseng ST, Tang J, Ku IH	2002					
Mi J.	1994	以績效為主要考量的預燒最佳化準則方法。				
Ebrahimi N.	2004					
Mi J.	1997	以成本為主要考量的預燒最佳化準則方法。				
Cha JH.	2000	/Z ~				
Wu CL, Su CT.	2002					
Cha JH.	2005					

作者	年代	結果與發現
Blischke WR, Murthy DNP	1994	各種不同型態的預燒策略以全面了解各式產品所適合的預燒政策。
Block HW, Savits TH	1997	八生四川边日明原况以来
Jensen F, Petersen NE	1982	
Kuo W, Kuo Y.	1983	
Xie M.	1989	最佳化預燒時間研究。
Wu S, Chan LY	2003	
Xie M, Lai CD	1996	保固成本與最佳預燒時間關係的分配。

建築服務性產品(如冷凍空調系統)的保固策略 多半都是在建築物完成並交付時才開始計算。 而所謂的休眠狀態指的是從安裝產品到建築物 完成並交付的這段時間。通常這段時間都不是 很短。不像一般性產品,買了就立即使用。在 交付時,產品可能就會有老化與惡化的情形而 失去其功用,另外在無運作期間也無法做檢驗 與維修。

■ 預燒程序大致分為三部分:

- 1. 對產品壽命時間分配的估算
- 2. 根據產品壽命時間分配適切度的評估
- 3. 對產品做最佳化預燒時間的研究

大部分文獻都是著重於第三個部份。

本研究是針對有休眠狀態的產品考慮兩種預燒 策略:

策略A:在一般環境下對產品作一預燒程序。

策略B:在休眠環境下對產品作一預燒程序, 接著在另一個一般環境下對產品作一 預燒程序。

- 預燒效果:休眠狀態<運作狀態
- 預燒成本:休眠狀態<運作狀態

Assumption and denotations

假設:

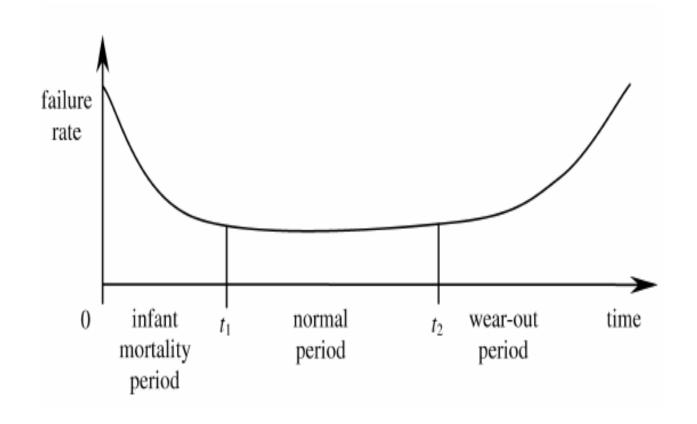
- 安裝點設為 0
- 交付點設為 t₀ 產品失效率:

$$r(t) = \begin{cases} r_d(t) & \text{at the dormant state,} \\ r_u(t) & \text{at the operating state.} \end{cases}$$

Assume

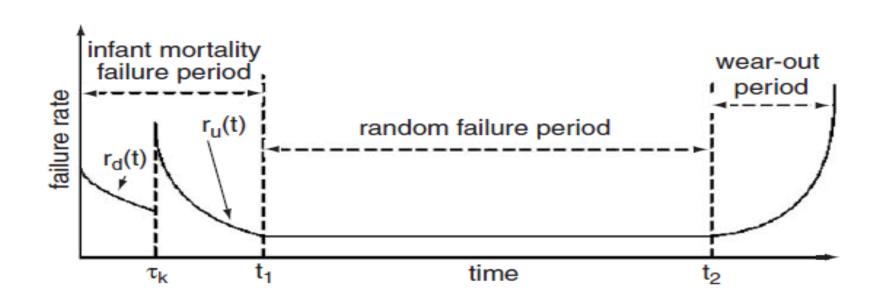
$$r_u(t)$$
 is $\begin{cases} \text{strictly decreasing} & \text{for } 0 \leq t_u \leq t_1, \\ \text{constant} & \text{for } t_1 \leq t_u \leq t_2, \\ \text{strictly increasing} & \text{for } t_2 \leq t_u \leq \infty, \end{cases}$ where t_u is operating time, $t_0 < t_1$.

保固策略是以FRW為主(保固期為W)



定義:

- 在休眠期產品壽命分配: $F_d(t) = 1 e^{-\int_0^t r_d(x) dx}$
- 在運作其產品壽命分配: $F_u(t) = 1 e^{-\int_0^t r_u(x) dx}$
 - manufacturing cost per product without burn-in; c_0 :
 - fixed setup cost of burn-in per product under a c_{1d} : dormant environment;
 - fixed setup cost of burn-in per product under an c_{1u} : normal operating environment;
 - cost per product time of burn-in per product under c_{2d} : a dormant environment;
 - cost per product time of burn-in per product under c_{2u} : an normal operating environment;
 - shop replacement cost per failure; c_3 :
 - extra replacement cost per failure during the c_4 : warranty period.



一般產品失效率成浴缸曲線

■ 建築服務性產品失效率曲線:

broken bathtub curve

產品執行預燒程序與保固策略時間: 安裝 開始使用 (保固開始計算) 休眠期 (無維修) 檢驗(若有失效,立即維修)

(檢驗與維修所費時間都忽略)

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab. ■ 策略A:在正常環境下進行預燒程序一段時間 **b**_{1u} 而此策略成本表示為 **C**_i(**b**_{iu})

■ 策略B:在休眠狀態下進行預燒成預燒一段時間 D_d,接著在一般環境下進行預燒程序一段時間 b₂₀。而此策略成本表示為 C₂(b₄,b₂₀)

總平均成本模型

Total mean cost model

■ 定理1.:產品在FRW與一階段預燒程序策略下的總平均保固成本:

$$C_1(b_{1u}) = (v_1(b_{1u}) + c_4)(M_1(w) + M_2(w) + 1) - c_4$$

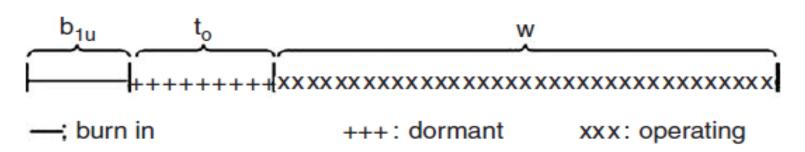


Fig. 2. One-stage burn-in policy.

■ 定理2.:產品在FRW與兩階段預燒程序策略下 的總平均保固成本:

$$C_2(b_d, b_{2u}) = (v_2(b) + v_3(b) + c_4)(M_4(w) + M_5(w) + 1) - c_4$$

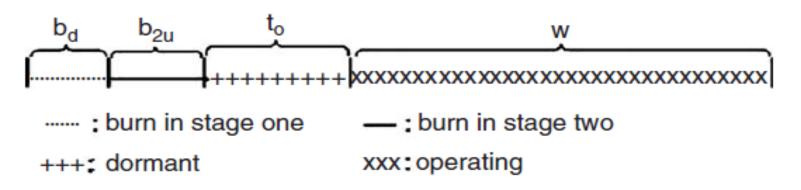


Fig. 3. Two-stage burn-in policy.

■ 藉由兩種模式的比較分析:

在預燒時間花費的部份:策略B>策略A

在總平均保固成本的部份:策略B>策略A

Numerical examples

■ 因為在不同的操作環境下,所以會有不同的失效率產生。針對休眠狀態與一般狀態下的失效率關係建構為 $\mathbf{r}_{\mathbf{d}}(t) = \alpha \mathbf{r}_{\mathbf{u}}(\beta t)$, $\alpha \times \beta \in (0,1)$ 而此稱為調整因子。 其產品壽命分配為: $F_{\mathbf{d}}(t) = 1 - \mathbf{e}^{-\int_{0}^{t} \alpha \mathbf{r}_{\mathbf{u}}(\beta x) \, \mathrm{d}x}$ ■ 使用Xie and Lai的模型:

壽命分配 :
$$F_u(t) = 1 - e^{-(\lambda_1 t)^{\lambda_2} - (\lambda_3 t)^{\lambda_4}}, t \ge 0$$

失效率函數:
$$r_u(t) = \lambda_1 \lambda_2 (\lambda_1 t)^{\lambda_2 - 1} + \lambda_3 \lambda_4 (\lambda_3 t)^{\lambda_4 - 1}$$
, $t \ge 0$.

進行參數分析

■ 在第3個group,其成本方面,策略B<策略A

Table 1 Different costs incurred

Group	Parameters			Change point	Policy A		Policy B			
	λ_1	λ_2	λ_3	λ_4	x_1	b_{1u}	$C_1(b_{1u})$	b_d	b_{2u}	$C_2(b_d,b_{2u})$
1	0.1	1.5	1	0.1	2.59	0.76	131.79	0.1	1.1	145.91
2	0.8	1.1	0.06	0.3	1.06	0.15	192.12	0.1	0.2	270.74
3	0.5	10	0.0001	0.1	0.9133	0.48	118.91	0.05	0.5	116.60
4	0.2	2	5	0.5	3.66	0.33	273.72	0.15	0.4	405.11

■ 策略A:期望成本與兩種不同壽命分配的預燒 時間比較

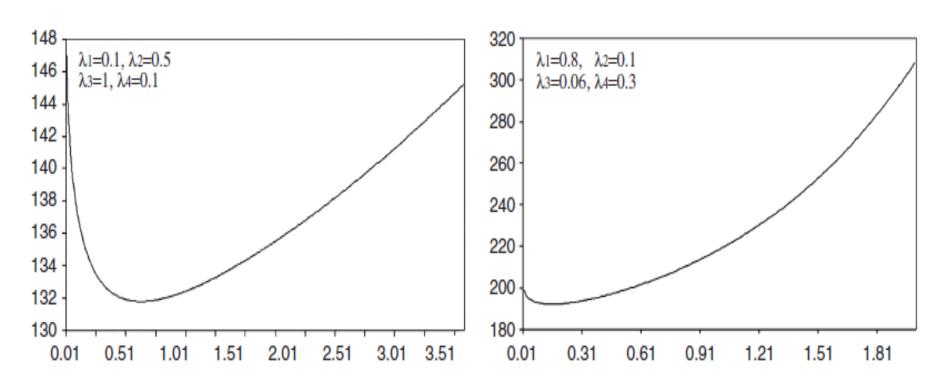


Fig. 4. Expected cost vs. burn-in time for two different life distributions as shown.

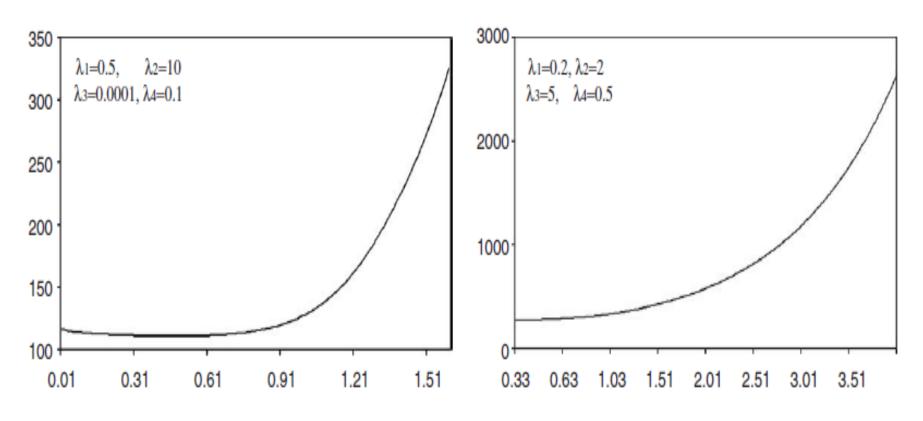


Fig. 5. Expected cost vs. burn-in time for two different life distributions as shown.

在β不同水準之下,隨α改變而造成的預燒時間表現圖:β越大,呈現的變化較明顯。

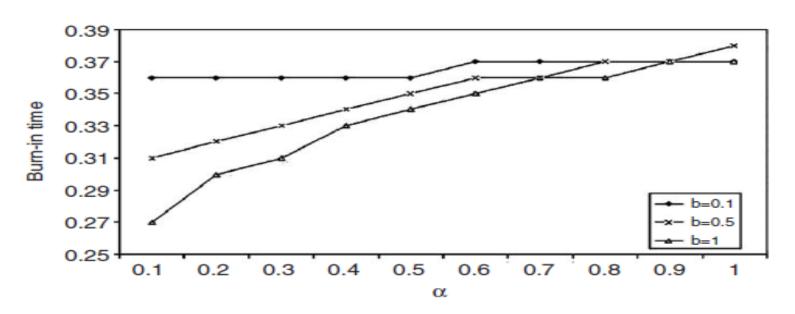


Fig. 6. Optimal burn-in times when the values of α change from 0.1 to 1, and $\beta = 0.1$, 0.5, and 1.

在β不同水準之下,隨α改變而造成的預燒成本表現圖:α越大,失效率越高,與燒時間與成本也都會相對提高。

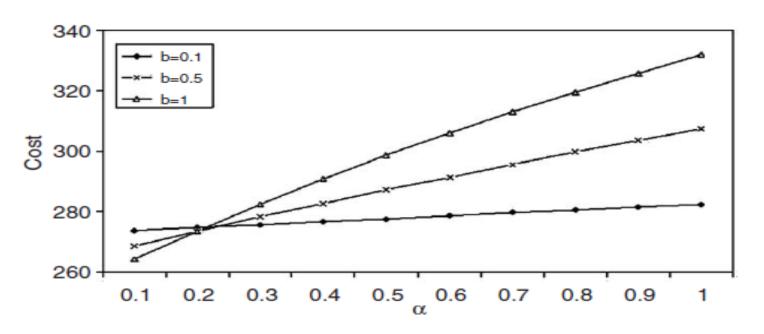


Fig. 7. Costs when the values of α change from 0.1 to 1, and $\beta = 0.1, 0.5$, and 1.

Conclusions

- 本篇研究考慮了兩種方案:
- 呈現一種在正常環境下的預燒程序。產品在建築物建設時是無運作的,在經過一段時間後才會執行運作。
- 2. 首先在休眠狀態下進行預燒程序一段時間,接 著又在一般環境下進行預燒程序。最後產品在 建築物建設時被安裝並執行運作。

謝謝大家

