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1. Introductlon and therature Rewew

m Statistical control charts, in general, consist
of the variable and attribute control charts, for
which researchers have developed various
methodologies.

m Almost all researchers have focused on the
first category of control charting and only a
few methods have been proposed to monitor
multi-attribute processes.
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1. Introductlon and therature Rewew

m Patel (1973) proposed a Hotelling-type T2 chart
to monitor observations from multivariate
distributions in which the marginals are
Binomial or Poisson.

m Wu et al. (2006) proposed an algorithm for the
optimization design of the np control chart.

m Larpkiattaworn (2003) proposed a back
propagation neural network (BPNN) for two-
attribute processes for the case of

bivariate Binomial and bivariate Poisson.
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1. Introductlon and therature Rewew

m Skinner et al. (2006) proposed a new statistic,
called deleted-Y , to be computed for each
variable.

m Niaki and Abbasi (2007b) proposed a
skewness reduction approach and by
simulation experiments showed their
approach performs better than the other
competing methods.
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1. Introductlon and therature Rewew

m |n this article, we propose a T2 control chart,
based on the Patel’'s (1973) method, to monitor
the number of defects in multi-attribute
processes.

m we first propose a data transformation
technigue and then employ the T2 control chart
for the transformed data.

m The goal is not just to detect process
deteriorations but to monitor process

Improvements.
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2. The Proposed Normalizing Transformation

m There are two approaches to reduce

-

skewness In univariate attribute control

charts: (1) adding some correction value to
the control limits based on the value of

the skewness; and (2) applying a normalizing
transformation technique

most researchers prefer to use the second
approach.
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Izing Transformation

m some transformation, such as the square root,
Inverse, arcsin, Q-transformation , and

parabolic inverse have been proposed in the
literature.

m Xie et al. (2000) proposed double square root
transformation for Geometric distribution.

m Based on the NORmal-To-Anything (NORTA)
method, we propose an inverse transformation
technique to transform multi-attribute data to a
shape close to a multivariate normal distribution.
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2. The Proposed Normalizing Transformation

m The goal of the NORTA algorithm is to generate a k-
dimensional random vector X with the following properties:

¢ X;~Fy,i=1,2,...,k where each Fy 15 an arbitrary cumulative
distribution function (cdf); and
o Corr|X] =Ly, where Iy is given.

m the vector X by a transformation of a k-dimensional
standard multivariate normal (MVN) vector z-a.z......z

fil[qj(zl)]
f';zl[q*‘(zz)]
X = . (1)
Pil[qj(zk”
where @ is the cdf of a univariate standard normal and F;'(u) = inf{x : F, (x) = u)
denotes the inverse cdf.
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2. The Proposed Normalizing Transformation

pli J) = Cort[X,, X, = Corr(F [0 )] FP ()]} i#). ()
Since
_ E(X,X;) — E(X))E(X})
Corr(X,, X;) = JVar(X) Var(X,) (3)

E(X,X)) = E{Fy, [®(z)]Fy, [®(z))])
= [_: ]_: FLPEFL P )¢, o (@0 25)dz,dz, (4)

where ¢, ; 4(2;, 2;) 1s the standard bivariate normal probability density function
(pdf) with correlation p.(i. j).
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2. The Proposed Normalizing Transformation

m In order to generate a k-dimensional random vector
by the NORTA algorithm we need to solve Eq. (4)
for each pair of the variables.

m Cario and Nelson (1997) presented some
theorems that describe the properties of £, which
are helpful in solving Eq. (4).

m In this research, we propose an inverse
transformation formula for transforming a vector of

multi-attribute variables to new variables with
approximate multi-variate normal distribution.
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2. The Proposed Normalizing Transformation

Y =[Y. V. )T =07 (Fy, (x))), @7 (Fy, (52))s - O (Fy, ()] (5)

assuming marginal Poisson distributions and using

Eq. (5), we transform the original vector X (1)to the
new one Y (5) and estimate the correlation matrix of
the transformed vector S, by the method of moments.
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3T2 Multl Attrlbute Contr'o'l'ﬁ'ChartsﬁBasea on
Transformed Data

m we first transform the vector of the original quality
attributes to a new attribute vector with approximate
multivariate normal distribution using Eqg. (5).

m we determine the control limits for our multivariate
control chart. If the plotted points
TP =(Y -Y)"'S{ (Y —=Y) (where Y= (Y. Y5, ..., Yo'
fall within the control limits, the process is in control.
Otherwise, it is out of control.
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Transformed Data

From historical data, estimate the
average number of each defect and the
correlations between each pair of them
e TN - W -
' | [ Assume a Poisson distribution for each

defect

v

" : - ~
Estimate the correlation matrix of the
o /| transformed normal variables(S, )

Phase I

1-Using Eq.(4).
2-Using simulation.

We can do it in two ways: l

|
\4

For each sample, count the number of )
each defect and arrange them in X

v

(" Transform X to Y using equation (6) b

.

g Employ the Hotelling 7°control chart )
to monitor Y where the correlation
matrix is Sy

v

Phase 11
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Transformed Data

3.1 Numerical
Examples

m Examples 1, 2
and 3 contain H

Table 1
General statistics of the original and the transformed vectors
Skewness Kurtosis P-Value (JB test)
Mean and Ist 2nd Ist 2nd Ist 2nd
Data Covariance variable variable variable variable variable varable
#1  Original ity = [3.940,4.954]" 0,531 0423 3327 3278 <0.00001 < 0.0000]
M G-l )

Poisson

Transformed ﬁv=[0.225,0.20?]r 0,079 0023 2952 2897 0.056 0.259
data -
e 0.939  0.401
¢ (Y]_(ﬂ.ztm 0.946)

parameters
with medium, +
large, and
small sizes,
respectively. /I

#2  Original fiy = [8.067,8.067]" 0356 0363 3129 3214 <0.00001 <0.00001

data c
~ o (1815 4.1[14)
Cov(X) = (4 104 8177

Transformed fiy =[0.203, 0.201]7 0.019 0030 3016 2960 0.835 0.578

Cov(Y) = (u 490 0982

data 0.939 0. 490)

#3  Original liy =[2.992, 3.967]7 06102 04789 33760 31574 < 0.00001 =0.0001
data c c
2985 0,975
Cov(X) = (n 975 1063

Transformed iy =[0.294,0240]7 0148 0055 2861 2854 < 00001 00297
data 0.889  0.258
CDV(Y]Z(U.zss 0.925)
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Transformed Data

m For a true normal distribution, the sample

skewness should be near zero and the
sample kurtosis should be near three.

m the transformed variables follow approximate
normal distributions. It means that the
proposed normalizing transformation method
works well for Poisson distributions with
medium- and large-size parameters.
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4 Slmulatlon Experlments

m Skinner et al. (2006) used Johnson et al.’s (1997)

method to generate data from a joint Poisson
distribution in which the joint probability
distribution is given by Eq. 6:

fx(x) = exp(— (o + 7, Hz)),ﬁ & mzm(fl) ("ﬂﬂ(i)j. (6)

1..1'2! i=0 l ""1';"2

where 4, and A, are the parameters of the marginal distribution and A4, is the
covariance. We note that the mean of the first and the second marginal distribution
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4. Simulation Experiments

m 4.1. Simulation Experiment 1

estimate the parameters of the marginal distributions for each defect type as 4, =3

and 4, = 2 with covariance being two. To monitor both attributes simultaneously,

we first use simulation to generate 5,000 data sets for a distribution with the above-
normal vector using Eq. (5). Based on the proposed transformation method we have:

r n

) —~ o {09525 0.4083
iy, =[0.2238,0.2523], and c:w(u):(ﬂm% [1.9286)'

‘3,“&,"? i_ Figure 2. The joint probability distribution of the original vector in simulation 1.




4. Simulation Experlments

m 4.1. Simulation Experiment 1

x2 4 4 x1

Figure 3. The joint probability distribution of the transformed vector in simulation 1.
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4. Simulation Experiments
m 4.2. Simulation Experiment 2

given production process. Assuming the number of defects of three types follow
a multivariate Poisson distribution, we estimate the parameters on an in-control

process as 4, = 1, 4, = 1, A, = 3 with the estimated variance—covariance matrix of
e 421
T=(211).
To monitor all three attributes simultaneously, first we generate 5,000
observations for a wector from the above distribution. Then we perform the
NORTA inverse transformation to arrive at the following estimates:

0.9244 0.4694 0.21 30)

fty = [0.2768,0.2555,0.2307]" and Cov(Y)= | 0.4694 09139 0.2085
0.2130 0.2085 0.9609

Table 2
ARL, values for different Shifts in simulation experiment 1
ARL\(%5F)
Shift— (7,.0) (0,03) (o,.07) (201, 0) (0. 2a,) (20,.20,)
Proposed 24.128 23.828  20.325 5.206 5222 4.439
method 23.828 24.027  20.829 4.726 4815 4.128
Deleted-¥ 19.322 63.429  67.278 4.248 9.957 29.645
method 18.38 65.273 64.57 3.646 9.2753 29 483
Shift— (30,.0) (0,30,) (30,.30,) (0.50,, —0.50,) (—0.5¢,,0.50,) (—a,.07,)
Proposed  2.263 2.303 1.903 48.110 49.595 8.685
method 1.719 1.782 1.370 48.932 50.272 8.324
s ﬁ] kY Deleted-¥ 1.9675  3.339 17.204 30.007 93.953 12.169
gL ¥ — method  1.3268 2.7625  16.904 29.723 90.772 12.267
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4. Simulation Experiments

m 4.2. Simulation Experiment 2
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Table 3
ARL, values for different shifts in simulation experiment 2
ARL,(%F)
Shift— (0,,0,0) (0, 0,,0) (0,0, 0y) (g,,0,.0) (g,,0,0y) (0, g,, 0q) (0,.0,,04)
Proposed 27.402 25.283 38.784 23.030 17.030 15.592 16.608
method 26.304 25.055 39.007 23.366 16.325 15.189 16.311
Deleted-Y 28.011 27.658 35.096 36.902 35.016 35.182 58.608
method 26.027 26.105 34,931 36.001 34,582 34.271 57.010
2(0150,0) 2(0,(7»0) 2(0,0,03) 2(01,02,0) 2((7“0,03) 2(0,02,03) 2(01,02,03)
Proposed 5.825 5.573 8.613 5117 3.377 3.207 3479
method 5.1716 5.129 8.3424 4.5361 2.8165 2.6558 2.955
Deleted-Y 5.438 5.479 6.987 9.623 9518 9,392 26.107
method 5.025 5.193 6.466 9.190 8.913 8.741 25312
3(a,.0,0) 3(0, 6,5, 0) 3(0, 0, a3) 3(g,. 0. 0) 3(a. 0, 03) 3(0, 5,5, 73) 3(ay. 65 03)
Proposed 2.473 2.427 3310 2.105 1.530 1.483 1.532
method 1.8999 1.7949 2.7395 1.5083 0.88844 0.88758 0.92707
Deleted-Y 2.220 2.233 2.720 4.151 4,122 4,202 15.127
method 1.939 2.109 2.170 3.826 3.692 3.857 14.442
0.4 —a,, 0.4(a,, 0.4(—a, 040, a5, 0.4(0, —a,, 0.4(ay, (0.4a,,
3. 0) —03, 0) 0, a3) —a3) 03) 0, —a3) 04,5, —03)
Proposed 71.671 81.687 108.904 09.063 118.405 104.902 44.685
method 72.618 82.532 109.06 95.994 116.86 102.31 43.324
Deleted-Y 80.400 81.104 101.190 83.191 99,223 82.696 39.244
method TR.O983 80.923 100.023 82.390 97.891 81.474 38.836
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4. Simulation Eﬂxfperiments
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m 4.3. Sensitivity Analysis on the Parameter

Values

Table 5 summarizes the results of the simulation experiment.

The results of Table 5 show that while the proposed method performs well 1n
situation in which the parameters posses small values, in majority of mean-shift
cases it outperforms the deleted-¥ procedure.

Table 5
ARL, values for different shifts in small-valued parameters
ARL (2t
Shift— (6,.0)  (0.65) (6. 0,) (20,,0) (0, 24,) (26,. 26,)
Proposed 9.061 9.520 9.007 2.682 2.764 2.494
method 8.437 B.887 9.193 2.330 2.502 2.302
Deleted-Y  12.088 13.355 43,397 2.749 2.941 18.867
method 11.604 12614 43027 2.197 2415 18.202
(36,.0)  (0,3a,) (36,.30,) (0.56,.-0.5¢y) (=0.17,.050,) (=0.1c,,0,)
Proposed 1.678 1.788 1.587 18.503 20.054 8.861
method 1.064 (0.958 1.009 17.942 28.680 8.313
Deleted-Y 1.518 1.495 11.281 13.307 18.597 3475
method 0.895 0.862 10,777 12.801 18.045 2.891
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4. Simulation Experiments
m 4.3. Sensitivity Analysis on the Parameter

Values
Table 6
ARL, values for different shifts in large-valued parameters
ARL (22)
Shift— (6,,0)  (0,05) (¢, 03) (24,, 0) (0. 26,) (26,.24,)
Proposed 34.613 33.837 23.442 6.694 6.573 4.015
method 33824 34.011 23162 6.200 6.080 3.480
Deleted-Y  51.856 23,955 77.288 10,007 5.204 39.193
method 51.461 23.790 76.422 9.473 4.665 38.842
(3¢,.0)  (0,30,) (3¢,.305) (0.56,,—0.56,) (=0.5¢,,.056,) (—0y.0)
Proposed 2498 2.395 1.581 61.022 56.611 11.628
method 1.918 1.832 0.948 60.688 57.252 11.155
Deleted-Y 3.571 2.136 23.552 60.924 33.634 6.949
method 3.011 1.526 22715 60.089 33.009 6.536
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y 5Conc|usmn and Recom'mendatlons for Future
Research

m In this article, we first proposed a new
transformation technique to approximate

the skewed distribution to a joint probability
distribution in which the marginals are normal,
and then applied a multivariate control
charting technique on the transformed data.

m When we use original data the ARL, value Is very
low and hence the method is not applicable.
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5 Conclusmn and Recom'mendatlons for Future
Research

m However, when we transform the data, the ARL,
will have a more appropriate value.

m Furthermore, by simulation we showed that the
proposed method performs better than the deleted-
Y method in most of the mean-shift scenarios.

m after the transformation phase, instead of T2 control

chart we may want to examine other multivariate
control charting technigues such as MEWMA and
MCUSUM as well.
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