

國立雲林科技大學工業工程與管理所 Graduate school of Industrial Engineering & Management, National Yunlin University of Science & Technology

> 系統可靠度實驗室 System Reliability Lab. http://campusweb.yuntech.edu.tw/~qre/index.htm

Monitoring Multi-Attribute Processes Based on NORTA Inverse Transformed Vectors

- 出 處: Communications in Statistics—Theory and Methods, 38: 964–979, 2009
- 作者: SEYED TAGHI AKHAVAN NIAKIAND BABAK ABBASI
- 報告者:鍾昇倍
- 指導老師:童超塵教授

Outline

- **1. Introduction and Literature Review**
- **2.** The Proposed Normalizing Transformation
- 3. *T*² Multi-Attribute Control Charts Based on Transformed Data
 - 3.1 Numerical Examples
- 4. Simulation Experiments
 - 4.1 Simulation Experiment 1
 - 4.2 Simulation Experiment 2
 - 4.3 Sensitivity Analysis on the Parameter Values

5. Conclusion and Recommendations for Future Research

- Statistical control charts, in general, consist of the variable and attribute control charts, for which researchers have developed various methodologies.
- Almost all researchers have focused on the first category of control charting and only a few methods have been proposed to monitor multi-attribute processes.

- Patel (1973) proposed a Hotelling-type T² chart to monitor observations from multivariate distributions in which the marginals are Binomial or Poisson.
- Wu et al. (2006) proposed an algorithm for the optimization design of the *np* control chart.
 - Larpkiattaworn (2003) proposed a back propagation neural network (*BPNN*) for twoattribute processes for the case of bivariate Binomial and bivariate Poisson.

- Skinner et al. (2006) proposed a new statistic, called deleted-Y, to be computed for each variable.
- Niaki and Abbasi (2007b) proposed a skewness reduction approach and by simulation experiments showed their approach performs better than the other competing methods.

- In this article, we propose a T² control chart, based on the Patel's (1973) method, to monitor the number of defects in multi-attribute processes.
- we first propose a data transformation technique and then employ the T² control chart for the transformed data.
 - The goal is not just to detect process deteriorations but to monitor process improvements.

- There are two approaches to reduce skewness in univariate attribute control charts: (1) adding some correction value to the control limits based on the value of
 - the skewness; and (2) applying a normalizing transformation technique
 - most researchers prefer to use the second approach.

 some transformation, such as the square root, inverse, arcsin, Q-transformation, and parabolic inverse have been proposed in the

literature.

- Xie et al. (2000) proposed double square root transformation for Geometric distribution.
- Based on the NORmal-To-Anything (NORTA) method, we propose an inverse transformation technique to transform multi-attribute data to a shape close to a multivariate normal distribution.

- The goal of the NORTA algorithm is to generate a kdimensional random vector X with the following properties:
 - $X_i \sim F_{X_i}$, i = 1, 2, ..., k, where each F_{X_i} is an arbitrary cumulative distribution function (cdf); and
 - Corr[X] = Σ_X , where Σ_X is given.
- the vector **X** by a transformation of a k-dimensional standard multivariate normal (MVN) vector $z = (z_1, z_2, ..., z_k)^T$

$$\mathbf{X} = \begin{pmatrix} F_{X_1}^{-1}[\Phi(z_1)] \\ F_{X_2}^{-1}[\Phi(z_2)] \\ \vdots \\ F_{X_k}^{-1}[\Phi(z_k)] \end{pmatrix}$$
(1)

where Φ is the cdf of a univariate standard normal and $F_X^{-1}(u) \equiv \inf\{x : F_X(x) \ge u\}$ denotes the inverse cdf. 國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

$$\rho_X(i,j) = \operatorname{Corr}[X_i, X_j] = \operatorname{Corr}\{F_{X_i}^{-1}[\Phi(z_i)], F_{X_j}^{-1}[\Phi(z_j)]\} \quad i \neq j.$$
(2)

Since

$$\operatorname{Corr}(X_i, X_j) = \frac{E(X_i X_j) - E(X_i)E(X_j)}{\sqrt{\operatorname{Var}(X_i)\operatorname{Var}(X_j)}}$$
(3)

$$E(X_i X_j) = E\{F_{X_i}^{-1}[\Phi(z_i)]F_{X_j}^{-1}[\Phi(z_j)]\}$$

= $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F_{X_i}^{-1}[\Phi(z_i)]F_{X_j}^{-1}[\Phi(z_j)]\varphi_{\rho_z(i,j)}(z_i, z_j)dz_idz_j$ (4)

where $\varphi_{\rho_z(i,j)}(z_i, z_j)$ is the standard bivariate normal probability density function (pdf) with correlation $\rho_Z(i, j)$.

- In order to generate a k-dimensional random vector by the NORTA algorithm we need to solve Eq. (4) for each pair of the variables.
- Cario and Nelson (1997) presented some theorems that describe the properties of Σ_z which are helpful in solving Eq. (4).
- in this research, we propose an inverse transformation formula for transforming a vector of multi-attribute variables to new variables with approximate multi-variate normal distribution.

 $\mathbf{Y} = [Y_1, Y_2, \dots, Y_k]^T = [\Phi^{-1}(F_{X_1}(x_1)), \Phi^{-1}(F_{X_2}(x_2)), \dots, \Phi^{-1}(F_{X_k}(x_k))]^T.$ (5)

assuming marginal *Poisson* distributions and using Eq. (5), we transform the original vector **X** (1)to the new one **Y**(5) and estimate the correlation matrix of the transformed vector S_Y by the method of moments.

3. *T*² Multi-Attribute Control Charts Based on Transformed Data

- we first transform the vector of the original quality attributes to a new attribute vector with approximate multivariate normal distribution using Eq. (5).
- we determine the control limits for our multivariate control chart. If the plotted points

 $T^{2} = (\mathbf{Y} - \overline{\mathbf{Y}})^{T} \mathbf{S}_{\mathbf{Y}}^{-1} (\mathbf{Y} - \overline{\mathbf{Y}}) \text{ (where } \mathbf{Y} = (Y_{1}, Y_{2}, \dots, Y_{k})^{T})$

fall within the control limits, the process is in control. Otherwise, it is out of control.

3. 72 Multi-Attribute Control Charts Based on Transformed Data

3. 72 Multi-Attribute Control Charts Based on Transformed Data

3.1 *Numerical Examples*

Examples 1, 2

 and 3 contain 年
 Poisson
 parameters
 with medium, 大
 large, and
 small sizes,
 respectively. 小

		General statistics of the original and the transformed vectors										
					Skewness		Kurtosis		P-Value (JB test)			
2		Data	Mean and Covariance	1st 2nd variable variable		1st variable	2nd variable	lst variable	2nd variable			
と 1 中_	#1	Original data	$\hat{\mu}_{\mathbf{X}} = [3.940, 4.954]^T$ $\widehat{\text{Cov}}(\mathbf{X}) = \begin{pmatrix} 4.022 & 1.902\\ 1.902 & 4.969 \end{pmatrix}$	0.531	0.423	3.327	3.278	< 0.00001	< 0.00001			
		Transformed data	$\hat{\mu}_{\mathbf{Y}} = [0.225, 0.207]^T$ $\widehat{\text{Cov}}(\mathbf{Y}) = \begin{pmatrix} 0.939 & 0.401\\ 0.401 & 0.946 \end{pmatrix}$	0.079	0.023	2.952	2.897	0.056	0.259			
	#2	Original data	$\hat{\mu}_{\mathbf{X}} = [8.067, 8.067]^T$ $\widehat{\text{Cov}}(\mathbf{X}) = \begin{pmatrix} 7.815 & 4.104 \\ 4.104 & 8.177 \end{pmatrix}$	0.356	0.363	3.129	3.214	< 0.00001	< 0.00001			
人		Transformed data	$ \hat{\mu}_{\mathbf{Y}} = [0.203, 0.201]^T \\ \widehat{\text{Cov}}(\mathbf{Y}) = \begin{pmatrix} 0.939 & 0.490 \\ 0.490 & 0.982 \end{pmatrix} $	0.019	0.030	3.016	2.960	0.835	0.578			
	#3	Original data	$\hat{\mu}_{\mathbf{X}} = [2.992, 3.967]^T$ $\widehat{\text{Cov}}(\mathbf{X}) = \begin{pmatrix} 2.985 & 0.975\\ 0.975 & 3.963 \end{pmatrix}$	0.6102	0.4789	3.3760	3.1574	< 0.00001	< 0.0001			
/]/		Transformed data	$\hat{\mu}_{\mathbf{Y}} = [0.294, 0.240]^T$ $\widehat{\text{Cov}}(\mathbf{Y}) = \begin{pmatrix} 0.889 & 0.258 \\ 0.258 & 0.925 \end{pmatrix}$	0.148	0.055	2.861	2.854	< 0.0001	0.0297			

Table 1

3. 72 Multi-Attribute Control Charts Based on Transformed Data

- For a true normal distribution, the sample skewness should be near zero and the sample kurtosis should be near three.
- the transformed variables follow approximate normal distributions. It means that the proposed normalizing transformation method works well for *Poisson* distributions with medium- and large-size parameters.

Skinner et al. (2006) used Johnson et al.'s (1997) method to generate data from a joint Poisson distribution in which the joint probability distribution is given by Eq. 6:

$$f_{\mathbf{X}}(\mathbf{x}) = \exp(-(\lambda_0 + \lambda_1 + \lambda_2)) \frac{\lambda_1^{x_1}}{x_1!} \frac{\lambda_2^{x_2}}{x_2!} \sum_{i=0}^{\min(x_i)} \binom{x_1}{i} \binom{x_2}{i} i! \left(\frac{\lambda_0}{\lambda_1 \lambda_2}\right)^i.$$
(6)

where λ_1 and λ_2 are the parameters of the marginal distribution and λ_0 is the covariance. We note that the mean of the first and the second marginal distribution

4.1. Simulation Experiment 1

estimate the parameters of the marginal distributions for each defect type as $\lambda_1 = 3$ and $\lambda_2 = 2$ with covariance being two. To monitor both attributes simultaneously, we first use simulation to generate 5,000 data sets for a distribution with the abovenormal vector using Eq. (5). Based on the proposed transformation method we have:

Figure 2. The joint probability distribution of the original vector in simulation 1.

4.1. Simulation Experiment 1

Figure 3. The joint probability distribution of the transformed vector in simulation 1.

4.2. Simulation Experiment 2

given production process. Assuming the number of defects of three types follow a multivariate Poisson distribution, we estimate the parameters on an in-control process as $\lambda_1 = 1$, $\lambda_2 = 1$, $\lambda_3 = 3$ with the estimated variance-covariance matrix of $\hat{\Sigma} = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \end{pmatrix}$.

To monitor all three attributes simultaneously, first we generate 5,000 observations for a vector from the above distribution. Then we perform the NORTA inverse transformation to arrive at the following estimates:

$$\hat{\mu}_{\mathbf{Y}} = [0.2768, 0.2555, 0.2307]^T$$
 and $\widehat{\text{Cov}}(\mathbf{Y}) = \begin{pmatrix} 0.9244 & 0.4694 & 0.2130 \\ 0.4694 & 0.9139 & 0.2085 \\ 0.2130 & 0.2085 & 0.9609 \end{pmatrix}$.

AKL_1 values for different sinits in simulation experiment 1									
	$ARL_1(\frac{Mean}{Std})$								
$Shift \rightarrow$	$(\sigma_1,0)$	$(0, \sigma_2)$	(σ_1, σ_2)	$(2\sigma_1, 0)$	$(0, 2\sigma_2)$	$(2\sigma_1,2\sigma_2)$			
Proposed	24.128	23.828	20.325	5.206	5.222	4.439			
method	23.828	24.027	20.829	4.726	4.815	4.128			
Deleted- Y	19.322	63.429	67.278	4.248	9.957	29.645			
method	18.38	65.273	64.57	3.646	9.2753	29.483			
$Shift \rightarrow$	$(3\sigma_1, 0)$	$(0, 3\sigma_2)$	$(3\sigma_1, 3\sigma_2)$	$(0.5\sigma_1, -0.5\sigma_2)$	$(-0.5\sigma_1, 0.5\sigma_2)$	$(-\sigma_1, \sigma_2)$			
Proposed	2.263	2.303	1.903	48.110	49.595	8.685			
method	1.719	1.782	1.370	48.932	50.272	8.324			
Deleted- Y	1.9675	3.339	17.204	30.007	93.953	12.169			
method	1.3268	2.7625	16.904	29.723	90.772	12.267			

Table 2 ARL_1 values for different Shifts in simulation experiment 1

非人見 WX 王 Uystern Nenability Lab.

4. Simulation Experiments 4.2. Simulation Experiment 2

ARL_1 values for different shifts in simulation experiment 2 $ARL_1\left(\frac{Mean}{Std}\right)$ $Shift \rightarrow$ $(\sigma_1, 0, 0)$ $(0, \sigma_2, 0)$ $(\sigma_1, \sigma_2, 0)$ $(\sigma_1, 0, \sigma_3)$ $(0, \sigma_2, \sigma_3)$ $(0, 0, \sigma_3)$ $(\sigma_1, \sigma_2, \sigma_3)$ Proposed 27.402 25.283 38.784 23.030 17.030 15.592 16.608 method 26.304 25.055 39.007 23.366 16.325 15.189 16.311 Deleted-Y28.011 27.658 35.096 36.902 35.016 35.182 58.608 34.582 method 26.027 26.105 34.931 36.001 34.271 57.010 $2(\sigma_1, 0, 0)$ $2(0, \sigma_2, 0)$ $2(\sigma_1, \sigma_2, 0)$ $2(\sigma_1, 0, \sigma_3)$ $2(0, \sigma_2, \sigma_3)$ $2(\sigma_1, \sigma_2, \sigma_3)$ $2(0, 0, \sigma_3)$ 5.825 5.573 8.613 3.377 3.207 3.479 Proposed 5.117 method 5.1716 5.129 8.3424 4.5361 2.8165 2.6558 2.955 Deleted-Y 5.438 5.479 6.987 9.623 9.518 9.392 26.107 method 5.025 5.193 6.466 9.190 8.913 8.741 25.312 $3(\sigma_1, 0, 0)$ $3(0, \sigma_2, 0)$ $3(\sigma_1, 0, \sigma_3)$ $3(0, 0, \sigma_3)$ $3(\sigma_1, \sigma_2, 0)$ $3(0, \sigma_2, \sigma_3)$ $3(\sigma_1, \sigma_2, \sigma_3)$ Proposed 2.473 2.427 3.310 2.1051.530 1.483 1.532 method 1.8999 1.7949 2.7395 1.5083 0.88844 0.88758 0.92707 Deleted-Y2.2202.233 2.720 4.151 4.122 4.202 15.127 method 1.939 2.109 2.170 3.826 3.692 3.857 14.442 $0.4(\sigma_1,$ $0.4(\sigma_1,$ $(0.4\sigma_1,$ $0.4(-\sigma_1,$ $0.4(-\sigma_1,$ $0.4(0, \sigma_2)$ $0.4(0, -\sigma_2)$ $0.4\sigma_2, -\sigma_3$ $\sigma_{2}, 0$ $-\sigma_{2}, 0$ $0, \sigma_3$ $-\sigma_3$ σ_3 $0, -\sigma_3$ 71.671 81.687 108.904 99.063 104.902 44.685 Proposed 118.405 method 72.618 82.532 109.06 95.994 116.86 102.31 43.324 Deleted-Y80.400 81.104 101.190 83.191 99.223 82.696 39.244 method 78.983 80.923 100.023 82.390 97.891 81.474 38.836

Table 3

4.3. Sensitivity Analysis on the Parameter Values

Table 5 summarizes the results of the simulation experiment.

The results of Table 5 show that while the proposed method performs well in situation in which the parameters posses small values, in majority of mean-shift cases it outperforms the deleted-*Y* procedure.

	ARL_1 V	alues for	different s	hitts in small-va	lued parameters				
Shift→	$ARL_1\left(\frac{Mean}{Std}\right)$								
	$(\sigma_1,0)$	$(0, \sigma_2)$	(σ_1,σ_2)	$(2\sigma_1,0)$	$(0, 2\sigma_2)$	$(2\sigma_1,2\sigma_2)$			
Proposed	9.061	9.520	9.007	2.682	2.764	2.494			
method	8.437	8.887	9.193	2.330	2.502	2.302			
Deleted- Y	12.088	13.355	43.397	2.749	2.941	18.867			
method	11.604	12.614	43.027	2.197	2.415	18.202			
	$(3\sigma_1, 0)$	$(0, 3\sigma_2)$	$(3\sigma_1, 3\sigma_2)$	$(0.5\sigma_1, -0.5\sigma_2)$	$(-0.1\sigma_1, 0.5\sigma_2)$	$(-0.1\sigma_1, \sigma_2)$			
Proposed	1.678	1.788	1.587	18.503	29.054	8.861			
method	1.064	0.958	1.009	17.942	28.680	8.313			
Deleted- Y	1.518	1.495	11.281	13.307	18.597	3.475			
method	0.895	0.862	10.777	12.801	18.045	2.891			

 Table 5

 ARL₁ values for different shifts in small-valued parameters

4.3. Sensitivity Analysis on the Parameter Values

	ARL_1 values for different shifts in large-valued parameters									
Shift→	$ARL_1(\frac{Mean}{Std})$									
	$(\sigma_1,0)$	$(0,\sigma_2)$	(σ_1,σ_2)	$(2\sigma_1,0)$	$(0,2\sigma_2)$	$(2\sigma_1,2\sigma_2)$				
Proposed	34.613	33.837	23.442	6.694	6.573	4.015				
method	33.824	34.011	23.162	6.200	6.080	3.480				
Deleted- Y	51.856	23.955	77.288	10.007	5.204	39.193				
method	51.461	23.790	76.422	9.473	4.665	38.842				
	$(3\sigma_1, 0)$	$(0, 3\sigma_2)$	$(3\sigma_1, 3\sigma_2)$	$(0.5\sigma_1, -0.5\sigma_2)$	$(-0.5\sigma_1, 0.5\sigma_2)$	$(-\sigma_1, \sigma_2)$				
Proposed	2.498	2.395	1.581	61.022	56.611	11.628				
method	1.918	1.832	0.948	60.688	57.252	11.155				
Deleted- Y	3.571	2.136	23.552	60.924	33.634	6.949				
method	3.011	1.526	22.715	60.089	33.009	6.536				

Table 6 ARL_1 values for different shifts in large-valued parameters

5. Conclusion and Recommendations for Future Research

- In this article, we first proposed a new transformation technique to approximate the skewed distribution to a joint probability distribution in which the marginals are normal, and then applied a multivariate control charting technique on the transformed data.
- When we use original data the ARL₀ value is very low and hence the method is not applicable.

5. Conclusion and Recommendations for Future Research

- However, when we transform the data, the ARL₀ will have a more appropriate value.
- Furthermore, by simulation we showed that the proposed method performs better than the deleted-Y method in most of the mean-shift scenarios.
- after the transformation phase, instead of T² control chart we may want to examine other multivariate control charting techniques such as MEWMA and MCUSUM as well.

THE END