

國立雲林科技大學工業工程與管理所 Graduate school of Industrial Engineering & Management, National YunlinUniversity of Science & Technology

A new approach to define sample size at attributes control chart in multistage processes: An application in engine piston manufacturing process

出處: SDOL

Journal of Materials Processing Technology183 (2007) 38-48 作者: Ihsan Kayaa, Orhan Engin 報告學生:田馥華 指導老師:童超塵教授

系統可靠度實驗室System Reliability Lab. http://campusweb.yuntech.edu.tw/~qre/index.htm

- The aim of the model is to determine the sample size for ACC.
- When GA solves the model, two main parameters are determined for every stage.
 - sample size, n
 - acceptance number, c

Contents

Keywords: Attribute control charts; Engine piston manufacturing; Multistage inspection problems; Genetic algorithms; Attribute control chart (ACC)

- In attribute control charts, defining sample size is a problem.
- In this study, defining sampling size in attribute control charts is tried to be clarified under maximum acceptance probability and minimum cost constraints.
- GAs have a distinct advantage over the other artificial techniques, which is the possibility of obtaining good solutions even when radical alterations are performed on the statement of the problem.

Introduction

And additionally, the number of constraints or the number of objective functions, do not affect the solution methodology or behavior of the algorithm completely.

Literature review

- Viharos and Monostori (1997), Celano and Fichera (1999) used GAs for control charts. Designing, cost minimization and economically design of control charts problems were solved by GAs.
- Wehrens et al. (1999), used GAs to define parameter of design experiment, and they defined best design parameter for quality.
- Langner et al. (2002) formulated a multistage inspection problem and it was solved by using genetic algorithms.

Literature review

Bakır and Altunkaynak (2004) improved a model for determining the shifts in the process mean and process variability help of x and R control charts. This model was solved with the help of GAs. GAs' results are better then other techniques, which are in literature.

Genetic algoriyhms

Since 1960s, there has been an increasing interest in the development of powerful algorithms to solve difficult optimization problems. This term is called evolutionary computation.

Genetic algoriyhms

(b) Evaluation and Contribution to the Gene Pool

Genetic algoriyhms

- Encoding-Binary encoding
- Selection-Roulette wheel selection
- Recombination-the most important tool for Gas
 - One-point crossover (OPX)
 - Position-based crossover (PBX)
 - Order crossover (OX)
 - Partial-mapped crossover (PMX)
 - Linear order crossover (LOX)
- Mutation operator
 - Inversion mutation
 - Neighbor exchange mutation
 - Reciprocal exchange mutation
 - Triplet mutation
 - Insertion mutation

Description of the process

- In this paper, acceptance sampling approach is applied as a multistage process.
- Kolarik (1995), sample sizes in attributes control charts are typically much larger than sample sizes in variable control charts.
- Probably cost is very important but firstly, we should take enough sample size to fit our needs for control charts.

Description of the process

The proposed model

- ✤ GKS1 = N1h1, i= 2, 3, . . . , m
- ✤ TBPS*i* = Niti, *i*= 1, 2, 3, . . . , *m*
- ✤ TBKPS1 = *ht1N1*
- ◆ TBKPS1 = Di-1t1 i = 2, 3, . . . , m
- Di = GKSi + TBPSi + TBKPSi

✤ pi = Di/Ni

$$P_{ai} = \sum_{x=0}^{c_i} \frac{\binom{D_i}{x} \binom{N_i - D_i}{n_i - x}}{\binom{N_i}{n_i}}$$

and $P_{aT} = \prod_{i=1}^{m} P_{ai}$

GKSi : defective number item for incoming to stage i Ni : lot size in stage i h : defective item rate for raw material TBPS*i* : defective number item which spoiled in bench in stage i *ti* : *defective item rate for bench (stage)* Di : total defective item number in stage i TBKPS*i* : defective number item, which spoiled in bench but it was defective *ki* : defective item number which found in stage i *pi* : proportion of defective item in stage i Pai : acceptance probability in stage i *PaT* : total acceptance probability for all

stages

The proposed model

Computational results

sults of mutation and crossover operators						
Table 4 Results of mutation ratio						
Table 5 Results of experiment	Rest value					
Crossover parameter	Linear order crossover (LOX)					
Crossover ratio	0.2					
Mutation parameter	Neighbor exchange mutation (NEM)					
Mutation rate	0.9					

0.9	1132.07389	1139.966284	2757
1.0	1132.07389	1148.548353	2757 2757

An application in a piston manufacturing process

	Stage 1	Stage 2	Stage 3	Stage 4	Stage 5	Stage 6
Ni	500	499	498	496	491	489
h (%)	0.1	0.0	0.0	0.04	1.01	1.43
t (%)	0.21	0.3	0.9	1.1	0.1	0.15
mi	10	10	15	5	8	7
u _i	75	70	250	50	50	50
r _i	100	100	300	75	70	75
C _{ki}	85	70	300	70	70	90
GKS	0	1	1	2	5	7
n _i	4	5	7	7	4	5
C _i	1	1	3	3	2	1
Pai	0.99999	1.00000	0.99999	0.99988	0.99118	0.999665
Cost _i	21.92	80.00	5,386.54	811.5987	2,381.29	2,620.878
Pat	0.90	0.90	0.90	0.90	0.90	0.90
Costi	677.1957249	2120	1567.927515	2159.497372		3776.506659
P_{aT}	0.85	0.85	0.85	0.0	85	0.85

An application in a piston manufacturing process

 Turning (Turning Bench)

 Processing of Piston Ring (CNC)

> 3. Drilling (Drill)

4. Processing of Pin

5. Turning (CNC)

C. Last Control

Conclusions

- GAs can be used to solve quality control problems.
- When these parameters are used, the performance of GAs, which are used to solve quality problems, will be increased.
- GAs can be used for defining sample sizes in attribute control charts very effectively.
- In future research, this approach can be improved for variable control charts, especially economical design. This approach is tested in piston production process; it will be tested in other production stages.

國立雲林科技大學工業工程與管理所 Graduate school of Industrial Engineering & Management, National YunlinUniversity of Science & Technology

Thank You !

系統可靠度實驗室System Reliability Lab. http://campusweb.yuntech.edu.tw/~qre/index.htm