

系統可靠度實驗室 System Reliability Lab. http://campusweb.yuntech.edu.tw/~qre/index.htm

右設限存活資料中每日可服劑量之統計推論

出處:國立中央大學

作者:林文明

報告學生: 陳怡璇

指導老師:童超塵教授

Contents

- ▲ 摘要
- ▲ 研究動機及目的
- ▲ 文獻回顧
- ♣ 統計方法
- ↓ 模擬研究
- ▲ 模擬結果
- ▲ 實例分析
- ዹ 結論

摘要

- → 毒物研究中每日可服劑量(Allowable Daily Intakes;簡稱ADI)之決定是一項重要的課題,因為服用過多的劑量將會有毒性反應。
- ▲ 本文研究如何就多組符合Cox 比例風險模式 之右設限資料,根據機率衡量及限制平均壽 命衡量建立額外風險,並且在一定的安全閥 值下,估計毒物標竿劑量及其信賴下限,做 為ADI的估計值。

研究動機及目的1/4

- → 估計ADI的方法若實驗個體太少,應用此一傳統方法將導致統計檢定不易達到顯著,因此會高估ADI。另一方面,就實驗設計而言,若處理組配置的劑量過低,可能導致最高劑量組就是ADI;反之,若處理組配置的劑量過高,可能導致最低劑量組顯著異於對照組,將無法估計ADI。
- 由於傳統決定每日可服劑量有上述缺點,所以 Crump (1984)提出配適劑量反應模式的想法,利用 額外風險(extra risk),求出標竿劑量(benchmark dose;BMD)的信賴下限,藉以估計ADI。

研究動機及目的2/4

↓ 針對離散型資料,假設P(d)為受測者接受毒物劑量d會產生毒性反應的機率,則額外風險定義為:

$$ER(d) = \frac{P(d) - P(0)}{1 - P(0)} \quad \circ$$

→ 至於連續型資料,令μ(d)為受測者接受毒物 劑量d時的平均反應值,此時額外風險定義為

$$ER(d) = \frac{\mu(d) - \mu(0)}{\mu(0)} \circ$$

研究動機及目的3/4

Crump (1984)建議在一定的標竿風險 (benchmark risk; BMR)之下,求出BMD 估 計式的â 信賴下界,,使得ER(â) = BMR 的信賴下 界,是為BMDL,以此估計ADI。

研究動機及目的4/4

- ♣ Kodell & West (1993)進一步延伸Gaylor & Slikker (1990) 比較暴露於d 劑量與基準劑量d =0 反應差異的想法,利用常態分配機率轉換定義風險函數。
- ▲ AI-Saidy et al. (2003)則引用此一風險函數定義額外風險,利用參數的最大概似估計式(MLE)之近似常態分配,在大樣本下探討毒物反應的風險。
- ♣ 與Crump (1984)不同的是, Al-Saidy et al.(2003)是 建立額外風險的聯合信賴束上限(simultaneous confidenceupper band), 而非額外風險的信賴上 界(confidence upper limit)。

文獻回顧 - 標竿劑量1/3

- 令Y(d)為受測者服用毒物劑量d之反應。假設Y(d) = μ(d)+ε,其中ε~N(0,σ2),μ(d)為服用毒物劑量d之平均反應值
- ♣ Kodell & West(1993)延伸Gaylar & Slikker (1990)比較暴露於d 劑量與基準劑量d =0反應差異的想法,針對毒性越強,反應值越低情形提出風險函數

$$R(d) = P\{Y(d) \le \mu(0) - c\sigma\},$$

文獻回顧 - 標竿劑量2/3

$$R(d) = P\{Y(d) \le \mu(0) - c\sigma\},$$

- •
- → Kodell & West (1993)利用 *R*(*d*) *R*(0)評估毒物劑量之風險。Al-Saidy et al. (2003)則利用額外風險

$$R_E(d) = \frac{R(d) - R(0)}{1 - R(0)}$$
,

■其中c為2 或3。若c =2 時, R(0)為0.02; 當c =3 時, R(0)為0.001

文獻回顧 - 標竿劑量3/3

- Kodell & West (1993)利用R(d) R(0)評估毒物劑量之風險。Al-Saidy et al. (2003)則利用額外風險
- ▲ 依據美國環境保護局 (2000)的建議,額外風險不得超過標竿風險BMR,其介於0.01 到0.1 之間。BMR即為安全性的閥值(threshold value)。在給定BMR之下,即可找出相對應的標竿劑量(簡稱為BMD)
- → 為了提供安全劑量的保守估計, Crump (1984)建議 求得此一標竿劑量的100(1-α)%信賴下限,簡記為 BMDL,為最高的可接受劑量,亦即ADI之估計

文獻回顧-輻射劑量1/2

- → 輻射安全劑量的是一個重要議題。國際輻射 防護委員會叢刊 (1990)指出,工人平均一年 暴露量應在2 rems 以下,一般民眾應在0.1 rem以下。
- → 為了解輻射劑量問題,首先必須認識輻射單位。其單位為格雷(Gy)或雷得(rad),其中1 Gy =100 rads。此外,吸收劑量乘以等效因子則為等效劑量,其單位為侖目(rem)、西弗(Sv)或毫西弗(mSv),其中1Sv =1000 mSv = 100 rems。

文獻回顧-輻射劑量2/2

- ♣ 事實上 · rems= rads(QF·) F
 - QF為品質因素(quality factor),即輻射透過身體時失去的能量,一般而言,具較高QF值的輻射相對地會產生更高的生物損壞。(法規數值如表1)
 - *DF* 則為分佈因素(distribution factor),反應不同的身體器官所受的影響,因為輻射不是平均分配在身體上,所以整個身體的輻射的分佈因素是一,即*DF*=1 (身體各部位之 *DF* 不盡相同。相關的法規數值如表2)

表 1 現行法規輻射品質因素。

輻射	QF
X-光	1
γ-輻射	1
β-粒子	1
熱中子	5
中子, 0.1 - 10 MeV	10
質子	10
α-粒子	20

表 2 現行法規分佈因素。

組織	DF
性腺	0.25
乳房	0.15
紅骨髓	0.12
肺	0.12
甲狀腺	0.03
骨	0.03
其他器官	0.30

文獻回顧-比例風險模式1/2

- # 假設T 為開始觀測到事件發生的時間,當事件為死亡時,T 即為存活時間令T的機率密度函數為f(t),其累積分配函數為F(t),則T的存活函數(survival function)為 <math>S(t) = Pr(T > t) = 1 F(t)
- ♣ 存活時間 T 的風險函數(hazard function)為

$$h(t) = \frac{f(t)}{S(t)} = -\frac{d}{dt} \{ \ln S(t) \}$$

文獻回顧-比例風險模式2/2

- ♣ 為考量受測者的死亡風險受劑量水準d的影響, 令h (t) 0 為基準組(d=0)受測者的基準風險函數(baseline hazaed function)
- **▲** 在Cox (1972)比例風險模式之下,接受劑量d受測者的風險函數h(t | d)為 $h(t | d) = \psi(d)h_o(t)$
 - 4 其中ψ (d)為d的非負函數。傳統定義ψ (d) = exp(βd),因此,比例風險模式之下的存活函數為

$$S(t \mid d) = \{S_0(t)\}^{\exp(\beta d)}$$

♣ 其中S (t) 0 為對應h (t) 0 的基準存活函數, S(t | d) 則為對應h(t | d)的存活函數。

文獻回顧-限制平均存活壽命1/3

本 若T 為存活時間,則平均壽命為 $\int_{\Gamma}^{\pi} s(t)dt$ 令C為對應T的設限時間,因為實驗中 Π_{Γ} 为可能在實驗期限截止時仍然存活,因此,實驗中經常可以觀察到的資料為Y = $\min\{T,C\}$ 及設限指標δ,若T ≤ C,則δ = 0;若T > C,則δ = 1,此即為右設限存活資料

文獻回顧-限制平均存活壽命2/3

→ 針對此種資料, Irwin(1949)提出將存活時間限制在合適選取的時間點 之內,即

$$\mu_{\tau} = \int_{0}^{\tau} S(t)dt$$

♣ 將區間[O,T]分成L個子區間, $(0,t_1],(t_1,t_2],...,(t_{L-1},\tau]$,♦ $Δ_i = t_i - t_{i-1}$

$$i = 1,...,L$$
 ,則 $S(t_i)$ 估計式為 $\hat{S}(t_i)$,且 μ_τ 估計式為

$$\hat{\mu}_{\tau} = \sum_{i=1}^{L} \hat{S}(t_{i-1})(\frac{\Delta_{i-1} + \Delta_{i}}{2}) ,$$

其中 $t_0 = 0 \cdot t_L = \tau$ 及 $\Delta_0 = 0$ 。 Kaplan and Meier (1958)建議以有效樣本

文獻回顧-限制平均存活壽命3/3

i=1,...,L , 則 $S(t_i)$ 估計式為 $\hat{S}(t_i)$, 且 μ_t 估計式為

$$\hat{\mu}_{\tau} = \sum_{i=1}^{L} \hat{S}(t_{i-1})(\frac{\Delta_{i-1} + \Delta_{i}}{2}) ,$$

其中 $t_0 = 0 \cdot t_L = \tau$ 及 $\Delta_0 = 0$ 。 Kaplan and Meier (1958)建議以有效樣本

準則決定τ為

$$\tau = \max \left\{ t : \frac{\stackrel{\wedge}{S}(t)(1-\stackrel{\wedge}{S}(t))}{\stackrel{\wedge}{V}(\stackrel{\wedge}{S}(t))} > \frac{2}{3}N \right\} ,$$

其中 $\hat{V}(\hat{S}(t))$ 中為 Greenwood 公式, N 為總樣本數。

統計方法-

額外風險要求下的每日可服劑量估計1/10

- ▲ 在毒物實驗中,接受零劑量對照組受測者的 存活時間可能具有異常反應,由此可定義零 劑量之下的風險,也可延伸定義其他劑量組 之下的風險。
- ↓ 如圖1斜線部分顯示存活時間異常低於100 的比例 或機率,則接受某一毒物劑量(處理組)受測者的異 常比例將增加,此即為毒性反應所致。

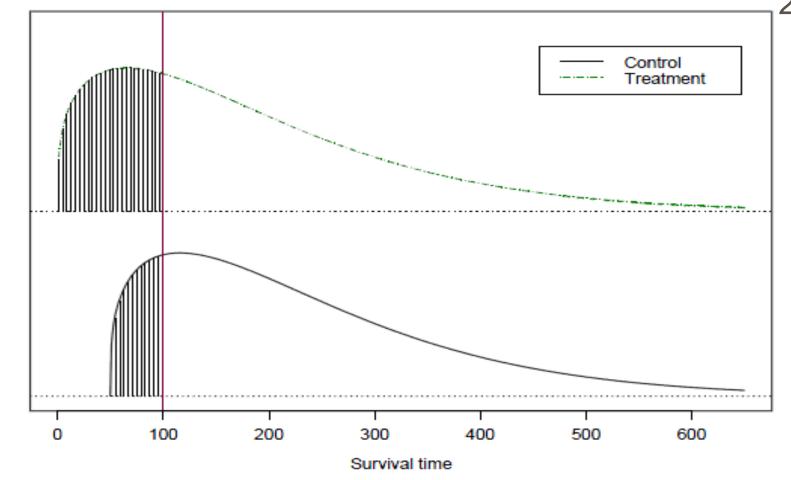


圖 1 對照組及處理組存活資料分配之下的異常

Density function

統計方法-額外風險要求下的每日可服劑量估計3/10

令 S(t|d) 為接受劑量 d 受測者在時間 t 的存活函數,則圖 1 斜線部

分,即異常機率為1-S(t|d)。令 $p=S(t_0|0)$,則可定義額外風險為

$$R_{E}(d) = \frac{F(t_{0} \mid d) - F(t_{0} \mid 0)}{1 - F(t_{0} \mid 0)} = \frac{S(t_{0} \mid 0) - S(t_{0} \mid d)}{S(t_{0} \mid 0)} = 1 - \frac{S(t_{0} \mid d)}{p} \circ$$

此一額外風險為相對的風險測量值,當劑量由 0 增為 d 時,接受劑量 d 受測者存活至時間 t₀ 降低之機率相對於接受零劑量受測者於時間 t₀ 之前死亡的機率。

統計方法-額外風險要求下的每日可服劑量估計4/10

▲ 在安全閥值BMR 下,令

$$R_E(d) = 1 - \frac{S(t_0, d)}{p} = BMR \quad ,$$

則可求解得知 BMD。在 Cox 比例風險模式下為

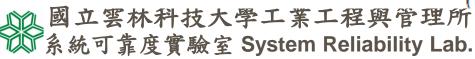
$$BMD = \frac{1}{\beta} \ln \left\{ \frac{\ln[p(1 - BMR)]}{\ln p} \right\} = \frac{C}{\beta}$$

其中 $C = \ln\{\ln[p(1-BMR)]/\ln p\}$ 。

上式 BMD 中僅涉及未知參數 β 及p。 β 可藉由 Cox 比例風險模式加以估計,但是 $p = S(t_0,0)$ 需要進一步研究。

統計方法-額外風險要求下的每日可服劑量估計5/10

▲ 實驗者提供對11照組的異常可能性p,則可以求得對應的存活時間t0,亦即


 $t_0 = \sup\{t: S(t,0) \ge p\}$ 。但是,求解 BMD 時,無需此一 t_0 之訊息。因此

BMD 估計為

$$\stackrel{\wedge}{BMD} = C / \stackrel{\wedge}{\beta}$$
,

其中 $\hat{\beta}$ 為參數 $\hat{\beta}$ 的部分最大概似估計量。事實上, $\hat{B}MD$ 的抽樣分配僅與 $\hat{\beta}$ 的抽樣分配有關,因此,利用 \hat{D} elta 方法 Casella & Berger, 2002) 可求得 $\hat{B}MD$ 的漸近分配為具有均值 $\hat{B}MD$,變異數為 $\left(\frac{C}{\beta^2}\right)^2\sigma_{\hat{\beta}}^2$ 的常態分配,記作

$$B\widehat{MD} \stackrel{d}{\to} N \left(BMD, \left(\frac{C}{\beta^2} \right)^2 \sigma_{\widehat{\beta}}^{2} \right) \circ$$

統計方法-額外風險要求下的每日可服劑量估計6/10

 應用Delta 方法也難以求解其漸近抽樣分配, 所以本文擬應用自助法(Bootstrapping Method)求得其抽樣分配的上α百分位,其步 驟如下:

步驟一:從對照組與處理組資料中進行重抽樣,重抽樣樣本數與原題別樣本數一樣。

步驟二:就步驟一所抽取樣本計算BMD,記為BMD。

步驟三:重複步驟一及步驟二 1000 次,可得重抽樣樣本的 $B\tilde{M}D$, 記為 $B\tilde{M}D_{1}$,..., $B\tilde{M}D_{1000}$.。

步驟四:將 1000 個統計值排序,使得 BMD $_{(1)}<,...,< <math>BMD$ $_{(1000)}$ 。則第 1000α 個位置為 BMD 的 $100(1-\alpha)$ %信賴下限 ,即

BMDL 或 ADI 估計值。

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

統計方法-額外風險要求下的每日可服劑量估計7/10

因為受測者之壽命為毒物劑量之遞減函數,考慮限制平均壽命 下之額外風險

$$MR_{E}(d) = \frac{\mu_{r}(0) - \mu_{r}(d)}{\mu_{r}(0)} = 1 - \frac{\mu_{r}(d)}{\mu_{r}(0)}$$

其中 $\mu_{\tau}(d) = \int_{0}^{t} S(t|d)dt$ 為劑量 d 之下的受測者在 $[0,\tau]$ 之內的平均壽命。

此一額外風險為相對風險測量值,相對於對照組限制平均壽命服用毒物劑量 d 之受測者的限制平均壽命減少量。此外, r 由涉險機率決定,

$$\tau = \max\{t : S(t \mid 0)G(t \mid 0) \ge k\} = \max\{t : \Pr(T > t)\Pr(C > t) \ge k\},$$

其中T為存活時間,C為對應T的設限時間,k ∈ (0,1)。

ЩP

統計方法-額外風險要求下的每日可服劑量估8/10

在安全閥值 BMR 下,可求解下式得到 BMD,即

$$BMD = \sup_{d} \left\{ d : \frac{\mu_{\tau}(0) - \mu_{\tau}(d)}{\mu_{\tau}(0)} \le BMR \right\} \circ$$

在 Cox 比例風險模式下

$$BMD = \sup_{d} \left\{ d : 1 - BMR \le \frac{\mu_{r}(d)}{\mu_{r}(0)} \right\} \circ$$

其中
$$\mu_r(d) = \int_0^t S(t|0)^{\exp(\beta t)} dt$$
 , $\mu_r(0) = \int_0^t S(t|0) dt$ 。 其估計式分別為

$$\hat{\mu}_{r}(0) = \sum_{i=1}^{L+1} \hat{S}_{0}(T_{(i-1)})(T_{(i)} - T_{(i-1)}),$$

$$\hat{\mu}_{r}(d) = \sum_{i=1}^{L+1} \left[\hat{S}_{0}(T_{(i-1)}) \right]^{\exp(\hat{\beta}d)} (T_{(i)} - T_{(i-1)}) ,$$


統計方法-額外風險要求下的每日可服劑量估計9/10

其中 L 為在區間
$$\begin{bmatrix} 0, \tau \end{bmatrix}$$
 所發生存活時間總次數, $T_{(0)} = 0 \times T_{(l+1)} = \tau$,而

 $\hat{S}_0(t)$ 則由 Kaplan-Meier 存活函數估計之。而 τ 估計值為涉險人數大於

等於nk的最大時間點,n為對照組樣本數。因此,BMD 估計式為

$$\widehat{BMD} = \sup_{d} \left\{ d : 1 - BMR \le \frac{\widehat{\mu_{\tau}}(d)}{\widehat{\mu_{\tau}}(0)} \right\} \circ$$

統計方法-額外風險要求下的每日可服劑量估10/10

因為BMD的抽樣分配難求,本文以自助法求出BMD抽樣分配的 上α百分位,即可求出BMDL,亦即ADI的估計,其步驟如下:

步驟一:從對照組與處理組資料中進行重抽樣,重抽樣樣本數與 原組別樣本數一樣。

步驟二:就步驟一所抽取樣本計算BMD,記為BMD。

步驟三:重複步驟一及步驟二 1000 次,可得重抽樣樣本的 $B\hat{M}D$, 記為 $B\hat{M}D_{1',...,}B\hat{M}D_{1000'}$ 。

步驟四:將 1000 個統計值排序,使得 BMD $_{(1)}<,...,< <math>BMD$ $_{(1000)}$ 。則 第 1000α 個位置為 BMD 的 $100(1-\alpha)$ %信賴下限,即

BMDL 或 ADI 估計值。

模擬研究1/3

- ▲ 本文的模擬研究考慮一個零劑量對照組(第0組)及4個漸增劑量水準的處理組(第1、2、3及4組),並且假設劑量水準分別為0、50、100、150及300。除韋伯比例風險模式,也考慮時間變數服從龔柏茲分配(Gompertz distribution)的Cox 比例風險模式
- 本章分別就給定時間Ot、p與限制平均存活時間下模擬研究。針對時間tO情況,設定 to = sup(t: 5o(t) < p},,其中p=0.01及0.05;而針對異常反應機率,設定異常機率為0.01;至於設限平均壽命,則考慮切點為涉險機率尚餘0.2及0.4情況。在各組樣本數皆為100的情形下,分別就資料30%及50%設限比例,研究不同設限比例對於BMDL覆蓋機率的影響。

模擬研究2/3

→ 龔柏茲分配的形狀參數為0.001 及0.1,尺度 參數為10-6及10-3。β 皆設定為0.005 及 0.01。此處BMR 設為0.01 及0.1。此外,設 限時間為均勻分配U(0,R),其中R 值由設限 機率(存活時間大於設限時間之機率)決定, 即時間變數服從韋伯分配時為

$$P(T > U) = \int_{0}^{R} \left(1 - \frac{t}{R}\right) \left[\lambda \gamma t^{\gamma - 1} \exp\left(\beta d - \lambda e^{\beta d} t^{\gamma}\right)\right] dt ,$$

而時間變數服從龔柏茲分配時為

$$P(T > U) = \int_{0}^{R} \left(\frac{1}{R}\right) \exp\left[\frac{\lambda}{\theta} (1 - \exp(\theta t)) \exp(\beta d)\right] dt \circ$$

模擬研究3/3

▲ 在上述的每一種情形下,利用IMSL 副程式庫中的 RNUN 生成均勻分配U(0,1)樣本,再根據機率積分轉換生成所需的時間變數資料。本章模擬母體BMD 之95%信賴下限,重複次數一千次。其中自助法每次重抽樣200次。為檢視母體標竿劑量與BMDL 遠離情形,定義偏誤(bias)為BMD 減平均BMDL,並且計算BMDL 小於母體BMD的相對次數,估計其覆蓋機率

模擬結果

→ 在 95%信賴水準之下,模擬次數一千次,覆蓋機率之標準誤差為0.0095。因此,模擬次數一千次時,在三倍標準誤差下,合理覆蓋機率介於(0.929,0.970)之間,若覆蓋機率在此一範圍內,則判定BMDL 為合理的BMD 之95%信賴下界。

表10 及表11 為給定異常機率0.01 之模擬結果。由表得知,變數變換方法覆蓋機率皆在可容忍誤差範圍內,反觀Delta 方法覆蓋機率高於可容忍誤差範圍,並且隨著設限比例增加,Delta 方法覆蓋機率越高。而變數變換方法所得偏誤皆比Delta 方法所得之偏誤低,這是因為Delta 方法較為保守,覆蓋機率超過設定之信心水準,所以下限較小,偏誤大。參數方面,除β值對偏誤有所影響外,改變形狀參數與尺度參數對偏誤影響不大。

表 10 已知其常機率 0.01-章伯分配比例風險模式下標 竿倒量 95%信賴下限。

数据比例	y *	A	β	BMR	(%	18 P.	阿 維多	5 .141
					Delta 方法	雙數變換	Delta 方法	雙數變徵
30%	1.0	10-4	0.005	0.001	3.56	2.95	0.989	0.944
				0.01	25.51	21.02	0.991	0.951
				0.10	01.63	76.12	0.082	0.053
			0.01	0.001	1.10	0.99	0.969	0.950
				0.01	7.71	6.87	0.971	0.955
				0.10	27.91	24.98	0.964	0.949
		10-2	0.005	0.001	3.56	2.95	0.989	0.942
				0.01	25.53	21.04	0.990	0.957
				0.10	91.71	76.16	0.984	0.951
			0.01	0.001	1.10	0.99	0.966	0.946
				0.01	7.71	6.87	0.972	0.956
				0.10	27.94	25.00	0.964	0.948
	3.0	10~	0.005	0.001	3.55	2.97	0.983	0.952
				0.01	25.33	21.01	0.986	0.951
				0.10	00.30	75.70	0.076	0.050
			0.01	0.001	1.09	0.98	0.971	0.957

模擬結果1/2

- → 表12 與表13 為給定異常時間之模擬結果。由表可知,考量異常時間的模擬表現不佳,小於給定時間有5%受測者異常反應之覆蓋機率皆在0.90 附近且部分偏誤為負,至於小於給定時間有1%受測者異常的模擬表現情形更加嚴重。這是因為對照組異常機率小所求之BMD
- 若在資料中給定的異常時間尚無死亡發生,此時存 活機率為1,將造成BMD 高估。

已知異常時間-韋伯分配比例風險模式下標竿劑量95%信賴下限

股限比例	7	2	β	BMR.	仁	lini.	西 統	覆蓋機率	
					p=0.01	p=0.05	p=0.01	p=0.05	
30%	1.0	10-4	0.005	0.001	-538.27	-4.27	0.634	0.886	
				0.01	-604.59	5.16	0.624	0.888	
				0.10	-467.93	52.75	0.658	0.898	
			0.01	0.001	-284.63	-2.30	0.634	0.894	
				0.01	-322.44	2.34	0.624	0.894	
				0.10	-305.76	25.01	0.616	0.894	
		10-2	0.005	0.001	-520.58	-4.25	0.648	0.886	
				0.01	-607.81	5.19	0.626	0.888	
				0.10	-491.23	52.79	0.648	0.898	
			0.01	0.001	-285.27	-2.31	0.634	0.894	
				0.01	-297.45	2.32	0.650	0.892	
				0.10	-342.04	24.98	0.584	0.890	
	3.0	10~	0.005	0.001	-572.55	-12.62	0.606	0.898	
				0.01	-544.95	-4.52	0.654	0.896	
				0.10	-560.55	44.74	0.608	0.908	
			0.01	0.001	-300.36	-6.81	0.612	0.900	
				0.01	-380.85	-2.93	0.566	0.900	
				0.10	-278.62	20.47	0.642	0.902	
		10-2	0.005	0.001	-539.06	-12.61	0.628	0.898	
				0.01	-566.04	-4.52	0.642	0.896	
				0.10	-525.12	44.69	0.628	0.906	
			0.01	0.001	-302.96	-6.82	0.615	0.898	
				0.01	-339.30	-2.95	0.608	0.900	
				0.10	-272.24	20 44	0.645	0.896	

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

已知異常時間-龔柏茲分配比例風險模式下標竿劑量95%信賴下限。

股限比例	8	A	β	BMR.	偏誤		覆蓋模率	
					p=0.01	p=0.05	p=0.01	p=0.05
30%	0.001	10-6	0.005	0.001	-536.03	-21.64	0.632	0.908
				0.01	-636.89	-11.39	0.600	0.892
				0.10	-558.35	59.82	0.612	0.906
			0.01	0.001	-303.04	-11.76	0.612	0.918
				0.01	-323.14	-6.56	0.624	0.890
				0.10	-285.89	28.66	0.632	0.918
		10-3	0.005	0.001	-470.75	-9.64	0.680	0.906
				0.01	-584.10	5.55	0.634	0.900
				0.10	-579.33	55.94	0.608	0.904
			0.01	0.001	-274.55	-5.29	0.646	0.906
				0.01	-331.72	2.48	0.618	0.902
				0.10	-295.12	26.64	0.626	0.910
	0.01	10-6	0.005	0.001	-631.19	-32.95	0.570	0.892
				0.01	-639.68	-20.83	0.596	0.902
				0.10	-593.28	57.28	0.584	0.906
			0.01	0.001	-309.50	-17.88	0.600	0.904
				0.01	-384.62	-11.87	0.564	0.902
				0.10	-382.25	27.34	0.540	0.914
		10-3	0.005	0.001	-602.92	-12.42	0.588	0.906
				0.01	-596.51	-1.19	0.628	0.896
				0.10	-599.45	58.05	0.590	0.904
			0.01	0.001	-289.42	-6.85	0.628	0.910
				0.01	-316.48	-1.10	0.630	0.892
				0.10	-332.41	27.79	0.596	0.916

模擬結果2/2

♣ 表14 與表15 為考慮限制平均壽命下之額外風險模 擬結果由表可知,部分覆蓋機率皆在合理範圍內, 但部分覆蓋機率偏低。偏誤部分,隨著安全閥值設 定越嚴苛,偏誤則越小。值得一提的是,在同樣參 數下,限制平均壽命偏誤低於給定異常機率之變數 變換方法的偏誤。

限制平均時間,韋伯分配比例風險模式下標竿劑量95%信賴下限

F	æ	ß	BMR.	偏誤		可能模率	
				0.225	0.421	0.2N	0.4EN
1.0	10-4	0.005	0.001	0.07	0.19	0.950	0.948
			0.01	0.71	1.10	0.951	0.936
			0.10	6.70	10.19	0.951	0.946
		0.01	0.001	0.03	0.06	0.956	0.962
			0.01	0.51	0.73	0.957	0.950
			0.10	2.75	4.50	0.963	0.960
	10-2	0.005	0.001	0.07	0.11	0.942	0.938
			0.01	0.71	1.10	0.950	0.938
			0.10	0.72	10.20	0.952	0.948
		0.01	0.001	0.03	0.06	0.962	0.964
			0.01	0.35	0.51	0.958	0.957
			0.10	2.76	4.50	0.965	0.952
3.0	10-4	0.005	0.001	0.14	0.31	0.929	0.940
			0.01	1.46	3.05	0.931	0.935
			0.10	13.99	22.03	0.936	0.937
		0.01	0.001	0.67	0.15	0.940	0.938
			0.01	0.60	1.43	0.944	0.937
			0.10	9.70	9.94	0.950	0.947
	10-2	0.005	0.001	0.16	0.33	0.936	0.930
			0.01	1.46	3.05	0.945	0.954
			0.10	14.00	22.07	0.934	0.924
		0.01	0.001	0.05	0.16	0.945	0.952
			0.01	0.61	1.42	0.931	0.947
			0.10	5.43	9.93	0.935	0.940
	3.0	1.0 10 ⁻⁴ 10 ⁻² 3.0 10 ⁻⁴	1.0 10 ⁻⁴ 0.005 0.01 10 ⁻³ 0.005 0.01 3.0 10 ⁻⁴ 0.005 0.01 10 ⁻² 0.005 0.01	1.0 10 ⁻⁴ 0.005 0.001 0.01 0.01 0.001 0.001 0.10 0.10 0	1.0 10 ⁻⁴ 0.005 0.001 0.07 0.01 0.71 0.10 6.70 0.01 0.001 0.03 0.01 0.51 0.10 2.75 10 ⁻² 0.005 0.001 0.07 0.01 0.71 0.10 6.72 0.01 0.03 0.01 0.35 0.10 2.76 3.0 10 ⁻⁴ 0.005 0.001 0.14 0.01 1.46 0.10 13.99 0.01 0.001 0.67 0.01 0.60 0.10 9.70 10 ⁻² 0.005 0.001 0.16 0.10 1.46 0.10 1.46 0.10 9.70 10 ⁻³ 0.005 0.001 0.16 0.01 0.60 0.01 0.060 0.01 0.061 0.01 0.061 0.01 0.061	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.2N 0.4N 0.2N

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

限制平均時間,龔伯茲分配比例風險模式下標竿劑量95%信賴下限。

股限比例	0	A	ß	BMR.	偏級		覆蓋機準	
				-	0.2N	0.424	0.2N	0.42N
30%	0.001	10-6	0.005	0.001	0.31	0.60	0.946	0.946
				0.01	3.62	6.08	0.959	0.930
				0.10	25.74	35.13	0.951	0.943
			0.01	0.001	0.33	0.27	0.936	0.939
				0.01	1.41	2.71	0.942	0.940
				0.10	11.34	21.04	0.954	0.938
		10^{-3}	0.005	0.001	0.07	0.13	0.955	0.947
				0.01	0.47	1.20	0.941	0.952
				0.10	8.00	19.95	0.945	0.958
			0.01	0.001	0.03	0.06	0.964	0.957
				0.01	0.71	2.43	0.954	0.962
				0.10	3.35	11.75	0.951	0.950
	0.01	10^{-6}	0.005	0.001	0.61	0.91	0.941	0.947
				0.01	6.64	10.41	0.953	0.945
				0.10	28.59	43.34	0.965	0.934
			0.01	0.001	0.43	0.61	0.938	0.938
				0.01	2.28	4.81	0.930	0.945
				0.10	2.18	17.18	0.961	0.948
		10^{-3}	0.005	0.001	0.25	0.39	0.941	0.938
				0.01	2.22	3.84	0.940	0.943
				0.10	19.09	27.76	0.945	0.939
			0.01	0.001	0.09	0.17	0.952	0.939
				0.01	0.92	1.71	0.950	0.942
				0.10	7.15	21.69	0.942	0.943
◎ 國立室林科技大學工業工程與管理所								

國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

實例分析1/4

- ♣ Patel and Hoel (1973)曾引用Upton et al. (1969)的實驗資料研究血癌和接受X-放射線 的劑量是否有關。
- → 實驗中選取535 隻雌性的RFM老鼠,隨機分成五組,全身照射X-放射線。待其死亡立刻進行解剖,若發現死因是血癌,則紀錄該老鼠自實驗開始至死亡的時間(存活時間);若老鼠並非死於血癌,或實驗中止時,該老鼠未患血癌,則觀測時間列為右設限時間。

實例分析2/4

- ↓ 根據實驗資料,我們將零劑量組視為對照組 ,其餘各組視為處理組。
- → 利用Kaplan-Meier 方法估計這五組資料的存活函數和對數累積危險函數,並繪於圖2和圖3。

對照組及處理組存活資料分配之下的異常

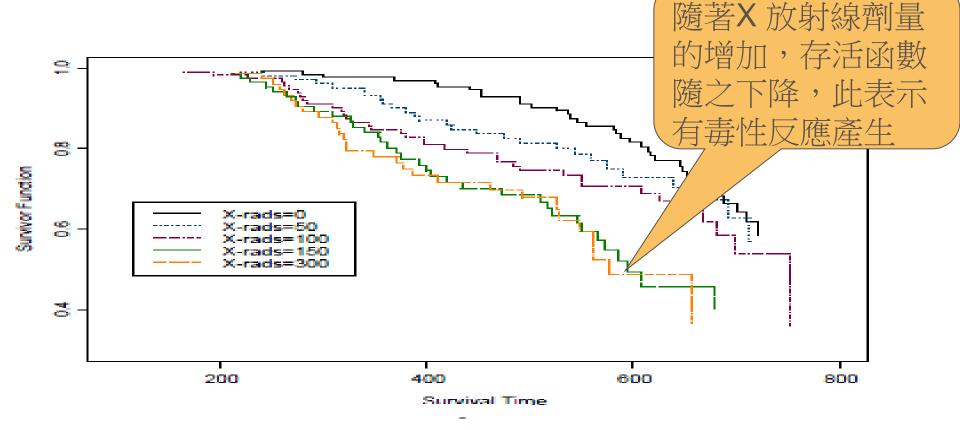
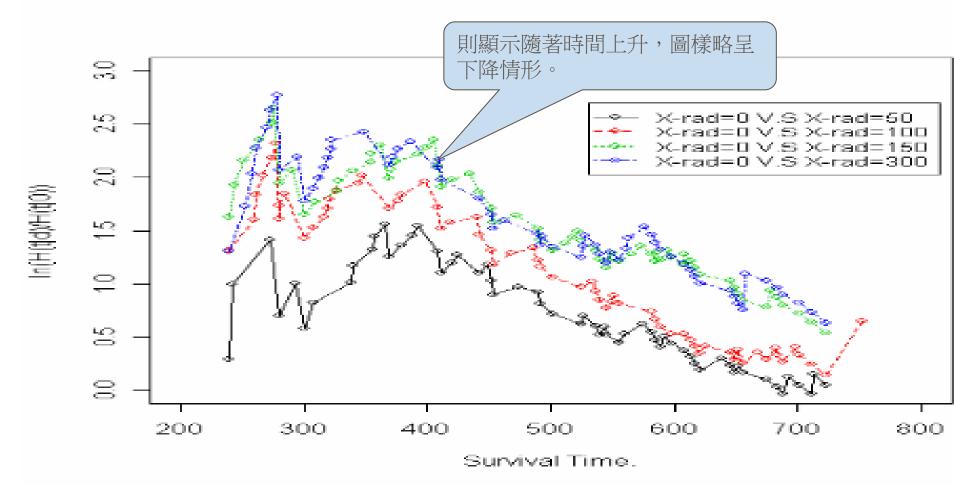
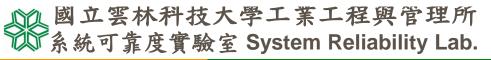
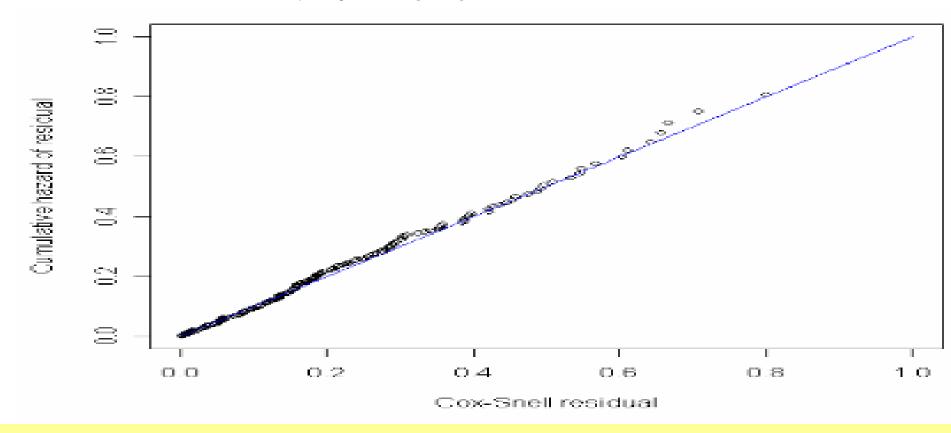
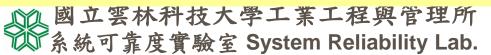


圖 2 X-放射線資料之 Kaplan-Meier 存活函數估計。

X-放射線資料之對數存活函數估計。


圖3 X-放射線資料之對數存活函數估計。

Cox-Snell 殘差圖

其圖行呈現通過原點之45度直線。若使用SAS套裝軟體檢定時間相依模式,所得p-值為0.14,這表示資料並無明顯違反Cox比例風險模式假設,因此我們將資料配適Cox比例風險模式估計BMD並求得BMDL,藉以估計ADI。

實例分析3/4

- ♣ 根據五組右設限存活資料配適Cox 比例風險模式,得知 $\hat{β} = 3.7 \times 10^{-3}$ & s.e($\hat{β}$) = 7.55×10⁻⁴|•
- + 本章分別就給定時間間 $t \, 0 \, \times p$ 與限制平均壽命下分析討論。
 - → 針對時間 t 0情況,實驗老鼠平均壽命二至三年,出生後1年與1.25年相當於人類35及45歲,通常老鼠出生滿三個月即進行實驗。因此,人類35與45歲,相當於本資料275與366天。
 - → 針對時間t 0情況,假設低於時間275 與366 天為異常;而針對異常機率1-p,假設對照組老鼠具異常機率為0.01及0.05;至於限制平均壽命,則考慮涉險人數尚餘10%、20%、30%與40%情況下分析。

實例分析4/4

→ 分別就安全閥值BMR 為0.0001、0.001、0.001、0.01 與0.1,求出本文所提統計方法的BMD 95%信賴下限,即為ADI 之估計值,結果列於表7 至表9

表 7 在Cox比例風險模式下,已知異常機率1-p時,X-放射線劑量之ADI估計值。

			NIZ
1-p	BMR	Delta 方法	變數變換方法
			~~~
	10-4	1.78	2.00
0.01	10-3	17.04	19.20
	$10^{-2}$	124.45	140.26
	10 ⁻¹	438.26	493.91
$\overline{}$	10-4	0.35	0.40
0.05	10-3	3.47	3.91
	$10^{-2}$	32.12	36.21
	10 ⁻¹	200.46	225.92

在不同安全閥值下,變數變換方法所求信賴下限皆比 換方法所求信賴下限皆比 Delta 方法所求之信賴下限值 大,顯示變數變換方法求得 BMD 之信賴下限較為精確。 在不同的p下,額外風險ADI 估計值差異頗大,顯示p的 選取極為重要。



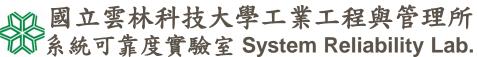
國立雲林科技大學工業工程與管理所 系統可靠度實驗室 System Reliability Lab.

#### 表8在Cox 比例風險模式下,已知異常時間 t O時,

X-放射線劑量之ADI 估計值。

t ₀	BMR	BMDL
	10-4	1.31
275	10-3	13.07
	$10^{-2}$	110.90
	10 ⁻¹	454.45
	10-4	0.61
366	10-3	5.87
	$10^{-2}$	52.86
	10-1	301.04

表8 為執行1000 次自助法, 然後取第100 位順序統計值 為ADI 估計值。


表8之BMDL 與給定p 情況類似。



# 在Cox 比例風險模式下,各種限制平均壽命估計的X-放射線劑量之ADI估計值。

BMR 準則	10-6	10-3	10-2	10-1
0.1N	0.27	2.87	26.05	>200
0.2N	0.29	2.98	30.80	>200
0.3N	0.36	3.18	31.29	>200
0.4N	0.39	4.04	38.01	>200

表9 為執行1000 次自助法, 然後取第100 位 順序統計值為 ADI 估計值。



#### 結論

- ▲ 本文所提統計方法針對具有存活資料的毒物實驗資料,研究毒物標竿劑量之信賴下限BMDL,藉以估計每日可服劑量。
- → 由模擬資料可知,限制平均壽命下額外風險偏誤小於機率衡量額外風險之偏誤,顯示限制平均壽命衡量之ADI估計較為準確。因此,當各組存活時間服從Cox 比例風險模式時,建議使用限制平均壽命衡量估計BMDL即ADI。
- ◆ 安全閥值則建議低於0.0001,以符合現行法規數值 。至於評估風險中的p、t0選取仍可遵循專業實驗 人員的意見。

# **END**

