# **Skewness Reduction Approach in Multi-Attribute Process Monitoring**

Communications in Statistics—Theory and Methods, 36: 2313–2325, 2007 Quality Control SEYED TAGHI AKHAVAN NIAKI AND BABAK ABBASI

#### 報告者:鍾昇倍 指導老師:童超塵教授

# Outline

- **1. Introduction**
- **2. Existing Multi-Attribute Control Charts**
- **3. The Proposed Normalizing Transformation**
- 4. Multi-Attribute Control Chart Based on Transformed Data in *T*<sup>2</sup> chart
- **5. Simulation Experiments**
- 6. Conclusion and Recommendations for Future Research

## 7. References

## 何謂偏態 (Skewness) & 峰態 (Kurtosis)

一、偏態量數主要是衡量
 次數分配之偏斜情況,
 亦即衡量高峰偏向變量
 大或變量小之一方。
 峰態量數是用來衡量次
 數分配圖形中高峰兩旁
 之次數是高峻或平坦之
 現象。

二、偏態係數  
(-)動差法  

$$\beta_1 = -\frac{m_3}{s^3} = \frac{\Sigma(X_2 - \overline{X})^3}{n}$$
  
若(1)m\_3爲0、 $\beta_1 = 0$ 爲對稱分配。  
(2)m\_3爲正、 $\beta_1 > 0$ 爲右偏分配(正偏分配)  
(3)m\_3爲負、 $\beta_1 < 0$ 爲左偏分配(負偏分配)  
三、峰態係數  
 $\beta_2 = \frac{m_4}{s^4} = \frac{m_4}{(m_2)^2} = \frac{\Sigma(X_2 - \overline{X})^4}{n}$   
若(1) $\beta_2 > 3$ 爲高狹峰分配(Leptokurtic distribution  
(2) $\beta_2 = 3$ 爲常態峰分配(Mesokurtic distribution)  
(3) $\beta_2 < 3$ 爲低關峰分配(PlatyKurtic distribution)

## 1. Introduction

In general, there are two broad categories in statistical control charts, namely variable and attribute control chart.

(1)Variable:指可量度出讀數之計量品質性質。(2)Attribute:指品質性質有多少件數是符合規定之計數品質性質。

## 1. Introduction (Conti.)

| 年代   | 相關文獻                                                                   |  |  |  |
|------|------------------------------------------------------------------------|--|--|--|
| 1947 | Multivariate control charts of the                                     |  |  |  |
|      | Shewhart type were first developed by him.                             |  |  |  |
| 1995 | They have shown that a multivariate control scheme normally has better |  |  |  |
|      | sensitivity than the one based on univariate control charts.           |  |  |  |
| 1985 |                                                                        |  |  |  |
| 1987 | Other multivariate control charts                                      |  |  |  |
| 1982 | are the multivariate CUSUM charts proposed.                            |  |  |  |
| 1990 |                                                                        |  |  |  |
|      | the multivariate exponentially weighted moving average (MEWMA) charts  |  |  |  |
| 1992 | proposed.                                                              |  |  |  |
|      | 1947<br>1995<br>1985<br>1987<br>1982<br>1990<br>1990                   |  |  |  |

## 1. Introduction (Conti.)

| 學者             | 年代    | 相關文獻                                                                                                                                     |                 |  |  |  |
|----------------|-------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|
| Bourke,P. D.   |       | Detecting shift in fraction non conforming using run-length control                                                                      |                 |  |  |  |
|                | 17771 | chart with 100% inspection.                                                                                                              | multi attributa |  |  |  |
| Montgomery     | 1     | Introduction to Statistical Quality Control.                                                                                             | multi-attribute |  |  |  |
| Xie et al.     | 2000  | Data transformation for geometrically distributed                                                                                        | processes       |  |  |  |
|                |       | quality characteristics.                                                                                                                 |                 |  |  |  |
| Patel, H. I.   | 1973  | He proposed a Hotelling-type $\chi^2$ chart to monitor observations from multivariate binomial or multivariate Poisson distribution.     |                 |  |  |  |
| 1 au 1, 11, 1, |       | multivariate binomial or multivariate Poisson distribution.                                                                              |                 |  |  |  |
| T 1'4          | 2003  | proposed a back propagation neural network (BPNN) f                                                                                      | or              |  |  |  |
| Larpkiattaworn |       | proposed a back propagation neural network (BPNN) for<br>two-attribute process control in bivariate binomial and bivariate Poisson case. |                 |  |  |  |

## 1. Introduction (Conti.)

 In this article, we propose a T<sup>2</sup> control chart based upon the Patel (1973)method to monitor multi-attribute processes. At first, we propose a data transformation technique and then we use a T<sup>2</sup> control chart.(提出一個資料轉換的技巧,之 後使用T<sup>2</sup>管制圖- Patel (1973)X<sup>2</sup>管制圖主要用在 多元變數製程的監控)

#### 2. Existing Multi-Attribute Control Charts 2.1 Normal Approximation of Multivariate Binomial Distribution

Although Patel's method included both time-independent and time-dependent samples, we focus on the <u>time independent</u> case.(本文的樣本主要是時間獨立的案例)

$$T^{2} = (\mathbf{X} - \overline{\mathbf{X}})' \mathbf{S}^{-1} (\mathbf{X} - \overline{\mathbf{X}}),$$

(1)

- X : a multivariate binomial random vector
- **X**: the sample mean vector,
- **S** : an estimator of the population covariance matrix

where T<sup>2</sup> has an approximate chi-square distribution with p degrees of freedom, <u>The upper control limit</u> of the control chart equals the upper quantile of a chi-squared distribution with p degrees of freedom. <u>The lower control limit is equal to zero</u>.(上管制界限由卡方分配在自由度(P)下求得,下管制界限等於0)

#### 2. Existing Multi-Attribute Control Charts 2.2 *Multivariate NP-Chart (MNP chart)*

$$UCL \& LCL = n \sum_{i=1}^{m} d_i \sqrt{p_i} \pm 3 \sqrt{n \left\{ \sum_{i=1}^{m} d_i^2 (1-p_i) + 2 \sum_{i(2)  
$$CL = n \sum_{i=1}^{m} d_i \sqrt{p_i}.$$$$

- C<sub>i</sub>: the number of non conforming items of type i(不合格項目的數量)
- m: the number of process attributes
- P<sub>i</sub>: the proportion non conforming of the ith quality characteristic(品質特性不合格比例)
- d<sub>i</sub>: the demerits of the severity of the non conformance in the ith quality characteristic(品質特性不合格的缺點數)
- p<sub>i</sub> & σ<sub>ij</sub>: are unknown and being estimated from historical data (未知且由歷史資料估預而得)

- 3. The Proposed Normalizing Transformation
- usually data have binomial, Poisson, or geometric distribution and the assumption of approximate normality causes two problems. (要將資料型態binomial, Poisson, geometric 等分配假設為常態,存在二個問題) (1)The first and most important problem is the fact that these distributions have skewness. (最重要的問題是這些分配有偏態的問題) (2) The second problem arises from the discrete nature of these distributions.

(這些分配均是離散型的分配,而常態分配是連續型分配)

There are two approaches to diminish skewness in univariate attribute control charts:

(有兩個減小偏態的方法,在多元計數管制圖的應用)

(1) adding some correction values to the control

limits based on the value of skewness

(基於偏態的數值對管制界限增加一些修正值)

- (2) applying normalizing transformation. (應用常態轉換的方法)
- Most researchers prefer to use normalizing transformation.

| 學者                  | 年代   | 轉換方法                                                                      |    |
|---------------------|------|---------------------------------------------------------------------------|----|
| Box and Cox         | 1964 | square root                                                               |    |
| Johnson and Kotz    | 1969 | inverse 反置法                                                               |    |
| Ryan                | 1989 | arcsin 反正弦法                                                               |    |
| Ryan and Schwertman | 1997 | parabolic inverse                                                         | 置法 |
| Quesenberry         | 1995 | Q-transformation                                                          |    |
| Xie et al.          | 2000 | <b>double square root</b><br>transformation for Geometric<br>distribution |    |
| Niaki and Abbasi    | 2007 | rth root transformation                                                   |    |

- In the skewness-reduction method, if we define f(r) to be the amount of skewness on the r<sub>th</sub> root transformed attribute x, (i.e., x<sup>r</sup>), we want to find r such that f(r) becomes zero. Therefore, applying the bisection method, we try to find a root for f(r) = 0 in the interval (0,1).(應用二分法,去找出第r個根,在f(r)為0,介於0~1的區間裡)
- In order to explain the proposed rth root transformation method, we present two numerical examples by NORTA algorithm (Cario and Nelson, 1997) and compare the results with the ones of the other transformation.(本文提出二個由演算法的數值分析例子,為了解釋第 r個根的轉換方法)

For a true normal distribution, the sample <u>skewness should be near</u> <u>zero</u> and the sample <u>kurtosis should be near three</u>.

Table 1

|       | A comparison of different transformation methods |                                |            |           |                    |  |  |  |  |
|-------|--------------------------------------------------|--------------------------------|------------|-----------|--------------------|--|--|--|--|
| Ind   | ex \ Method                                      | The proposed<br>transformation | $\sqrt{X}$ | arcsin(X) | Q-Transformation** |  |  |  |  |
| Exa   | mple 1                                           |                                |            |           |                    |  |  |  |  |
| $X_1$ | Skewness                                         | 0.0019                         | -0.7429    | 1.1099    | 0.0384             |  |  |  |  |
| -     | Kurtosis                                         | 2.9596                         | 4.6772     | 2.5539    | 2.8992             |  |  |  |  |
|       | P-value (JB test)                                | 0.8337                         | 0          | 0         | 0.1831             |  |  |  |  |
| $X_2$ | Skewness                                         | 0.0093                         | -0.6257    | 1.3510    | 0.0134             |  |  |  |  |
| -     | Kurtosis                                         | 3.0032                         | 4.3563     | 4.0303    | 2.9456             |  |  |  |  |
|       | P-value (JB test)                                | 0.9642                         | 0          | 0         | 0.6724             |  |  |  |  |
| Exa   | imple 2                                          |                                |            |           |                    |  |  |  |  |
| $X_1$ | Skewness                                         | 0.0015                         | -0.2863    | 0.7987    | 0.0486             |  |  |  |  |
| •     | Kurtosis                                         | 3.0213                         | 3.2549     | 4.5368    | 3.0815             |  |  |  |  |
|       | P-value (JB test)                                | 0.9579                         | 0          | 0         | 0.1915             |  |  |  |  |
| $X_2$ | Skewness                                         | -0.0042                        | -0.5293    | 1.4977    | 0.0325             |  |  |  |  |
| -     | Kurtosis                                         | 2.9882                         | 4.2086     | 5.5721    | 2.9419             |  |  |  |  |
|       | P-value (JB test)                                | 0.9753                         | 0          | 0         | 0.4465             |  |  |  |  |
|       |                                                  |                                |            |           |                    |  |  |  |  |

\*\*In Q-Transformation method each transformed variable  $(X_{new})$  is  $\Phi^{-1}(F(x))$ , where F(x) is cumulative probability distribution function (cdf) of X and  $\Phi$  is the standard normal cdf.

## 4. Multi-Attribute Control Chart Based on Transformed Data in $T^2$ chart

- T<sup>2</sup> control charts, due to its excellent performance in multivariable quality control environments, <u>may perform</u> <u>well in multi-attribute processes in which we transform</u> <u>their attributes</u> to have multi-normal distribution.
   (將計數值轉換成常態分配的, T<sup>2</sup> 管制圖應也會有較佳的表現)
- To avoid the problems in Patel's method (1973),
  - (1) we eliminate the skewness of marginal distributions.
    - (排除邊際分配的偏態)
  - (2) estimate the covariance matrix of the transformed variables. (估計轉換變數的共變異矩陣)
  - (3) the control limits in multivariate control process.

(在多元變數管制製程建置管制界限)

## 5. Simulation Experiments

#### 5.1.1 Simulation Experiment 1

simulation experiment with three attributes. based on available historical data,
 sample size of 30, probability vector of <sup>^</sup>p = (p<sub>1</sub> = 0.1 p<sub>2</sub> = 0.15 p<sub>3</sub> = 0.18)

 $\widehat{\Sigma} = \begin{pmatrix} 2.6 & 0.6 & 0.48 \\ 0.6 & 3.8 & 1 \\ 0.48 & 1 & 4.5 \end{pmatrix}$ To monitor all attributes simultaneously, first we generate 5,000 observations on MBiniomial ( (n<sub>1</sub> = 30 n<sub>2</sub> = 30 n<sub>3</sub> = 30 ),  $\widehat{p}$ ,  $\widehat{\Sigma}$ ) random vector. Then we find appropriate transformations such that the marginal distributions are approximately normal. Based on the

proposed transformation method we have 
$$r1 = 0.76$$
,  $r2 = 0.76$ ,  $r3 = 0.75$ ,

$$\hat{\boldsymbol{\mu}}_{new} = [2.26, 3.37, 3.48] \text{ and } \widehat{\boldsymbol{\Sigma}}_{new} = \begin{pmatrix} 0.94 & 0.19 & 0.15 \\ 0.19 & 1.11 & 0.26 \\ 0.15 & 0.26 & 1.16 \end{pmatrix}$$

and the upper control limit of T<sup>2</sup> chart is  $\chi^2_{0.995,3} = 1283$ .

# 5. Simulation Experiments

#### 5.1.2 Simulation Experiment 1

| Table 2           ARL <sub>1</sub> values for different shifts in simulation experiment 1 |                            |                            |                            |                              |                              |                              |                                                    |
|-------------------------------------------------------------------------------------------|----------------------------|----------------------------|----------------------------|------------------------------|------------------------------|------------------------------|----------------------------------------------------|
| Shift→                                                                                    | $(\sigma_1, 0, 0)$         | $(0, \sigma_2, 0)$         | $(0, 0, \sigma_3)$         | $(\sigma_1, \sigma_2, 0)$    | $(\sigma_1, 0, \sigma_3)$    | $(0, \sigma_2, \sigma_3)$    | $(\sigma_1, \sigma_2, \sigma_3) \\ 8.784 \\ 9.873$ |
| Proposed method                                                                           | 24.990                     | 33.265                     | 19.110                     | 15.909                       | 10.747                       | 13.310                       |                                                    |
| MNP method                                                                                | 69.926                     | 80.059                     | 84.742                     | 22.5130                      | 24.822                       | 27.104                       |                                                    |
| Shift→                                                                                    | $(2\sigma_1, 0, 0)$        | $(0, 2\sigma_2, 0)$        | $(0, 0, 2\sigma_3)$        | $(2\sigma_1, 2\sigma_2, 0)$  | $(2\sigma_1, 0, 2\sigma_3)$  | $(0, 2\sigma_2, 2\sigma_3)$  | $(2\sigma_1, 2\sigma_2, 2\sigma_3)$                |
| Proposed method                                                                           | 5.476                      | 5.903                      | 3.745                      | 2.781                        | 2.112                        | 2.320                        | 1.929                                              |
| MNP method                                                                                | 22.132                     | 24.874                     | 29.194                     | 4.948                        | 5.049                        | 5.780                        | 2.184                                              |
| Shift→                                                                                    | $(3\sigma_1, 0, 0)$        | $(0, 3\sigma_2, 0)$        | $(0, 0, 3\sigma_3)$        | $(3\sigma_1, 3\sigma_2, 0)$  | $(3\sigma_1, 0, 3\sigma_3)$  | $(0, 3\sigma_2, 3\sigma_3)$  | $(3\sigma_1, 3\sigma_2, 3\sigma_3)$                |
| Proposed method                                                                           | 2.283                      | 2.142                      | 1.673                      | 1.296                        | 1.166                        | 1.241                        | 1.106                                              |
| MNP method                                                                                | 9.369                      | 10.891                     | 13.026                     | 2.007                        | 1.994                        | 2.185                        | 1.204                                              |
| Shift→                                                                                    | $(-\sigma_1, \sigma_2, 0)$ | $(-\sigma_1, 0, \sigma_3)$ | $(0, -\sigma_2, \sigma_3)$ | $(2\sigma_1, -2\sigma_2, 0)$ | $(2\sigma_1, 0, -2\sigma_3)$ | $(0, 2\sigma_2, -2\sigma_3)$ | $(\sigma_1, \sigma_2, -2\sigma_3)$                 |
| Proposed method                                                                           | 13.247                     | 9.817                      | 7.612                      | 1.002                        | 1.379                        | 1.215                        | 1.505                                              |
| MNP method                                                                                | 463.193                    | 547.985                    | 395.338                    | 449.893                      | 306.384                      | 430.089                      | 320.916                                            |

The results of Table 2 show that the proposed method on the transformed data performs better than MNP procedure in all scenarios. This fact is more obvious in situations where there are both positive and negative shifts around the mean.

## 5. Simulation Experiments

#### 5.2 Simulation Experiment 2

## simulation experiment with three correlated attributes. sample size of 22 denerated data sets, probability vector of $\mathbf{\hat{p}} = (p_1 = 0.11 p_2 = 0.12 p_2 = 0.16)$

| Table 3<br>ARL, values for different shifts in simulation experiment 2 |                                                  |                                                |                                                                              |                                                                              |                                                 |                                                 |                                                                             |
|------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------|
| Shift→                                                                 | $(\sigma_1, 0, 0)$                               | $(0, \sigma_2, 0)$                             | $(0, 0, \sigma_3)$                                                           | $(\sigma_1, \sigma_2, 0)$                                                    | $(\sigma_1, 0, \sigma_3)$                       | $(0, \sigma_2, \sigma_3)$                       | $(\sigma_1, \sigma_2, \sigma_3)$                                            |
| Proposed method                                                        | 34.764                                           | 56.448                                         | 32.220                                                                       | 18.258                                                                       | 35.438                                          | 15.899                                          | 16.574                                                                      |
| MNP method                                                             | 64.7150                                          | 77.3580                                        | 66.2040                                                                      | 21.3070                                                                      | 18.2190                                         | 21.1830                                         | 8.4030                                                                      |
| Shift→                                                                 | $(2\sigma_1, 0, 0)$                              | $(0, 2\sigma_2, 0)$                            | $(0, 0, 2\sigma_3)$                                                          | $(2\sigma_1, 2\sigma_2, 0)$                                                  | $(2\sigma_1, 0, 2\sigma_3)$                     | $(0, 2\sigma_2, 2\sigma_3)$                     | $\begin{array}{c}(2\sigma_1,2\sigma_2,2\sigma_3)\\2.645\\1.7890\end{array}$ |
| Proposed method                                                        | 6.179                                            | 11.831                                         | 5.523                                                                        | 3.032                                                                        | 7.152                                           | 2.277                                           |                                                                             |
| MNP method                                                             | 19.5460                                          | 25.9220                                        | 21.4290                                                                      | 4.0440                                                                       | 3.8670                                          | 4.3720                                          |                                                                             |
| Shift→                                                                 | $(3\sigma_1, 0, 0)$                              | $(0, 3\sigma_2, 0)$                            | $(0, 0, 3\sigma_3)$                                                          | $(3\sigma_1, 3\sigma_2, 0)$                                                  | $(3\sigma_1, 0, 3\sigma_3)$                     | $(0, 3\sigma_2, 3\sigma_3)$                     | $(3\sigma_1, 3\sigma_2, 3\sigma_3)$                                         |
| Proposed method                                                        | 2.3410                                           | 4.0100                                         | 1.8930                                                                       | 1.3330                                                                       | 2.5160                                          | 1.1880                                          | 1.2760                                                                      |
| MNP method                                                             | 7.9310                                           | 10.2320                                        | 10.0990                                                                      | 1.7670                                                                       | 1.8420                                          | 1.8510                                          | 1.1150                                                                      |
| Shift→<br>Proposed method<br>MNP method                                | $(-\sigma_1, \sigma_2, 0)$<br>243.518<br>554.106 | $(-\sigma_1, 0, \sigma_3)$<br>6.243<br>566.093 | $\begin{array}{c} (0, -\sigma_2, \sigma_3) \\ 28.213 \\ 235.146 \end{array}$ | $\begin{array}{c} 1.5(\sigma_1,-\sigma_2,0)^*\\ 2.001\\ 169.011 \end{array}$ | $(2\sigma_1, 0, -2\sigma_3)$<br>1.186<br>1015.6 | $(0, 2\sigma_2, -2\sigma_3)$<br>2.418<br>1213.8 | $(\sigma_1, \sigma_2, -2\sigma_3)$<br>1.5510<br>907.371                     |

\*In this experiment if  $p_2$  shifts  $-2\sigma_2$  then  $p_2 = -0.0186$  (negative) therefore we shift  $p_2$  to  $1.5\sigma_2$  ( $p_2 = 0.0161$ ).

#### The results of Table 3 show that the proposed method performs better than <u>MNP procedure in most of the mean-shift scenarios.</u>

# 6. Conclusion and Recommendations for Future Research

Monitoring multi attribute processes, where there are some correlations between attributes, is an important issue in statistical quality control. One of these methods is to approximate distribution of the correlated attributes with multi normal distribution(with i.i.d)

(計數之間存在相互關聯的,而我們在著假設其為常態(iid-相互獨立)

In this article, we propose a new transformation technique to reduce the amount of skewness in the marginal first, and then we use a multivariate control charting (T<sup>2</sup> control Chart) on the transformed data. 6. Conclusion and Recommendations for Future Research (Conti.)

Future research may consider processes with multivariate Poisson distribution and instead of <u>T<sup>2</sup> control</u> chart examine other multivariate control charts like Multivariate Cumulative Sum (MCUSUM) and Multivariate Exponentially Weighted Moving Average (MEWMA) control charts.

## References

- Bourke, P. D. (1991). Detecting shift in fraction non conforming using run-length control
- chart with 100% inspection. J. Qual. Technol. 23:225–238.
- Box, G. E. P., Cox, D. R. (1964). An analysis of transformations. J. Roy. Statist. Soc. B
- **26:211–243**.
- Cario, M. C., Nelson, B. L. (1997). Modeling and generating random vectors with arbitrary
- marginal distributions and correlation matrix. Technical Report. Department of
- Industrial Engineering and Management Sciences, Northwestern University, U.S.A.
- Gibra, I. N. (1978). Economically optimal determination of the parameters of np-control
- charts. J. Qual. Technol. 10:12–19.
- Hawkins, D. M. (1991). Regression adjustment for variables in multivariate quality control.
- J. Qual. Technol. 25:175–182.
- Hayter, A. J., Tsui, K. L. (1994). Identification and qualification in multivariate quality
- control problems. J. Qual. Technol. 26:197–208.
- Healy, J. D. (1987). A note on multivariate CUSUM procedures. *Technometrics* 29:409–412.
- Hotelling, H. (1947). Multivariate quality control. In: Eisenhart, C., Hastay, M. W., Wallis,
- W. A., eds. *Techniques of Statistical Analysis*. New York, NY: McGraw-Hill.
- Jarque, C. M., Bera, A. K. (1987). A test for normality of observations and regression
- residuals. Int. Statist. Rev. 55:163–172.
- Johnson, N. L., Kotz, S. (1969). *Discrete Distributions*. New York, NY: John Wiley.
- Jolayemi, J. K. (1994). Convolution of independent binomial variables: an approximation
- method and a comparative study. *Computat. Statist. Data Anal.* 18:403–417.

## References (Conti.)

- Jolayemi, J. K. (2000). An optimal design of multi-attribute control charts for processes
- subject to a multiplicity of assignable causes. *Appl. Math. Computat.* 114:187–203.
- Kourti, T., MacGregor, J. F. (1996). Multivariate SPC methods for process and product
- monitoring. J. Qual. Technol. 28:409–428.
- Larpkiattaworn, S. (2003). A Neural Network Approach for Multi-Attribute Process Control
- with Comparison of Two Current Techniques and Guidelines for Practical Use. Ph.D.
- Thesis, University of Pittsburgh, Pittsburgh, PA.
- Lowry, C. A., Montgomery, D. C. (1995). A review of multivariate control charts. *IIE Trans.* 27:800–810.
- Lowry, C. A., Woodall, W. H., Champ, C. W., Erigdon, S. (1992). A multivariate
- exponentially weighted moving average control chart. *Technometrics* 34:46–53.
- Lu, X. S., Xie, M., Goh, T. N., Lai, C. D. (1998). Control chart for multivariate attribute
- processes. Int. J. Product. Res. 36:3477–3489.
- Lucas, J. M., Crosier, R. B. (1982). Fast initial response for CUSUM quality control
- schemes: give your CUSUM ahead start. *Technometrics* 24:199–205.
- Lucas, J. M., Saccucci, M. S. (1990). Exponentially weighted moving average control
- schemes: properties and enhancements. *Technometrics* 32:1–10.
- Marcucci, M. (1985). Monitoring multinomial processes. *J. Qual. Technol.* 17:86–91.
- Montgomery, D. C. (2003). Introduction to Statistical Quality Control. 5th ed., New York:
- John Wiley.
- Niaki, S. T. A., Abbasi, B. (2005). Fault diagnosis in multivariate control charts using artificial neural networks. J. Qual. Reliab. Eng. Int. 21:825–840.

