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The importance of Statistical Process Control (SPC), also called Statistical Process Mon-
itoring (SPM) techniques, for quality improvement is well-recognized in industry. With
advances in sensing and data collection technology, large volumes of data are being rou-
tinely collected under Engineering Process Control (EPC) or Automatic Process Control
(APC). There is a great need for SPC for variation reduction and quality improvement
in these environments. This research studies the statistical properties of monitoring
the process output and the control action of EPC controlled processes. Several statis-
tical monitoring strategies are introduced and their advantages and disadvantages are
discussed.
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1. Introduction

As manufacturing quality has become a decisive factor in global market competition,

Statistical Process Control (SPC), also called Statistical Process Monitoring (SPM)

technique, is becoming very popular in industries. Many manufacturing processes,

which are equipped with Engineering Process Control (EPC) or Automatic Process

Controls (APC), are implementing SPC to a different extent.

Many manufacturing processes are equipped with EPC, which is for short-term

variation reduction only. A process change may be compensated by EPC, but if the

root causes of the change are not detected and identified, a continued departure

from the nominal may happen repeatedly. Moreover, as EPC can mask process

defects, failures, and drifts, this may lead to eventual catastrophic failures. Thus,

for long-term process improvement, it is crucial to utilize SPC for EPC controlled

processes to detect significant changes in the process.

Using SPC to monitor the special causes of a process along with EPC is known

to be a major tool for on-line quality improvement.1–3 It can achieve the following
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tasks. First, it can verify the continued adequacy of EPC scheme. SPC can de-

tect the inadequacy of the control scheme which may increase the process varia-

tion and affect the output quality. Second, it can signal significant changes in the

process from past performance. Also, it can help identify root causes of changes

in performance.4

Although SPC techniques are currently used, the existing methods cannot

effectively monitor and detect changes in EPC controlled processes. This is partly

because that EPC may cause the process output to adapt to the changes and there

is only a limited “window of opportunity” to detect process changes. All the exist-

ing SPC techniques suffer from this problem. The limitations of conventional SPC

techniques will be discussed in Sec. 2.

SPC is traditionally applied to processes in which successive observations are

assumed to be independent and identically distributed (i.i.d.). In practice, EPC

controlled processes often violate the i.i.d. assumption, and the presence of auto-

correlation has a serious impact on the performance of control charts.5,6 In the

existing literature, all the autocorrelated SPC studies are focused on processes

without EPC. One raw-data monitoring approach is to modify the control limits of

traditional charts to achieve an acceptable rate of false alarms resulting from the

trending behavior inherent in most autocorrelated processes.7 A forecast-error mon-

itoring approach uses special cause charts (SCC) proposed by Alwan and Roberts.8

As the forecast errors are uncorrelated if the forecast model is correct, conventional

control charts can then be applied to them. However, SCC still may not detect spe-

cial causes effectively, especially when the process is positively autocorrelated.9,10

Tsung, Shi, and Wu11 pointed out that the monitoring of EPC controlled processes,

which is different from the auto-correlated SPC, has some unique features: (i) it

has more complicated auto-correlated structures due to EPC; (ii) the EPC control

parameters have impacts on the SPC performance; (iii) the correlation between the

input and output needs to be considered.

More research is needed to utilize the engineering/physical information con-

tained in EPC and to establish the relationships among the controlled output and

input, the model parameters, and the control parameters. These relations/models

will provide a basis for deriving SPC schemes that incorporate both auto- and cross-

correlation in the inherent process, i.e., the predictable part of the process. These

SPC schemes will be used to detect the process change due to special causes, i.e.,

the unpredictable part of the process. The correlation issue will be tackled in Sec. 3.

In many controlled processes, the only monitored variable, if any, is the con-

trolled output.3 Monitoring the controlled outputs alone may not be sufficient

because the process changes can be compensated by control actions and are there-

fore hard to detect from the process outputs. Tsung et al.11 proposed a joint

monitoring scheme using Hotelling’s approach and Bonferroni’s approach for a

EPC-controlled process. Tsung12 also extended this idea to monitor input-output

combinations using principle component monitoring.
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Both individual monitoring and combined monitoring of the process output

and the control action will be described and discussed in Secs. 4 to 6. In Sec. 6, the

advantages and disadvantages of several statistical monitoring strategies will also

be discussed. This paper ends with some concluding remarks in Sec. 7.

2. Limitations of Conventional Control Charts

In this section, we illustrate the limitations of conventional control charts, such as

the Shewhart charts, for an EPC-controlled process. We consider an integral (I)

control scheme,

xt = kI

t∑
j=0

ej (1)

where ej is the amount of deviation from process mean at time j and the constant

kI determines the amount of cumulative (integral) adjustment. It is a special case

of Proportional-Integral-Derivative (PID) control schemes,13–15 and is one of the

most popular EPC schemes. It is also equivalent to the minimum mean squared

error (MMSE) control scheme of a first order integrated moving average (IMA)

disturbance process. The integral control produces a control action that is propor-

tional to the sum of the output error. It is known in control theory that once a step

change or mean shift is added to the system, this control can reduce or eliminate the

static error, that is, the steady state magnitude of the process output E(et) ' 0.16

The reason is as follows. Here the integral control action is xt = xt−1 + kIet.

Suppose the control parameters are within the stability region, that is, the con-

trolled process is asymptotically stable to a step change or mean shift in the input.

Thus, xt is nearly constant, i.e., xt ' xt−1, which leads to the conclusion that the

expected value E(et) approaches zero.

It is desirable to eliminate the static magnitude of the error of the process output

from the viewpoint of EPC, but it is not good to mask the detection of out of control

conditions from the viewpoint of the statistical monitoring. As the information

contained in the dynamics of the process outputs is ignored in conventional SPC,

the detection of the mean shifts would mainly depend on the steady state magnitude

E(et), which is reduced to zero under an integral control.

Thus, conventional SPC is not very useful in detecting the out-of-control con-

ditions such as mean shifts as long as it has missed the transient period right after

mean shifts occur. This is also realized as a “window of opportunity” for out-of-

control detection by the process output.17 All the conventional SPC techniques

suffer from the same problem.

3. Analogy to Forecast-Error Monitoring

The study of SPC for EPC-controlled processes has been scanty. We will demon-

strate the relationship between the forecast-error monitoring in autocorrelated SPC
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schemes and the monitoring of an EPC-controlled process, and show their anal-

ogy. Consider an observation dt+1 generated by a time series process. We make

a one-step-ahead forecast d̂t+1, which is to be a function of current and previous

observations dt, dt−1, . . . . The forecast error at time t+ 1 is

et+1 = dt+1 − d̂t+1 . (2)

On the other hand, we consider an EPC-controlled process with a simple dynamic

model yt+1 = xt, which means that yt+1 at time t+1 depends on the control action

xt at time t. Let dt+1 be the disturbance at time t+ 1. Then the process output at

time t+ 1 is

et+1 = yt+1 + dt+1 = xt + dt+1 . (3)

Suppose d̂t+1 was some estimate of dt+1, which could be made at time t. Then a

realizable form of control could be obtained by setting

xt = −d̂t+1 . (4)

Then the process output at time t+ 1 is

et+1 = dt+1 − d̂t+1 , (5)

which is equal to the “forecast error”. Therefore, the monitoring of forecast er-

rors is equivalent to monitor the process output with a corresponding EPC control

rule. It is known that the EPC control rule corresponding to the MMSE forecast is

the MMSE control, and the EPC control rule corresponding to the exponentially

weighted moving average (EWMA) forecast is the integral (I) control.18 Wardell

et al.6 and Vander Wiel17 pointed out the ineffectiveness of forecast-error monitor-

ing in many cases. This is equivalent to pointing out the ineffectiveness of EPC-

controlled process output monitoring.

Vander Wiel17 also pointed out the superiority of cumulative sum (CUSUM)

charts over Shewhart charts in monitoring the forecast errors of an IMA(0,1,1)

process. Note that CUSUM charts monitor the cumulative sum of et

zt ∼
t∑

j=0

ej , (6)

although in practice, we accumulate only the excess over a critical value k to reduce

false alarms.

For an IMA(0,1,1) disturbance process with its corresponding MMSE control,

which is integral control in this case, the control action is the cumulative sum of

current and previous process outputs multiplied by a constant kI as in (1). We now

realize that monitoring zt in Eq. (6) is analogous to monitoring xt in Eq. (1), thus

the superiority of CUSUM charts for the forecasting errors may be used to predict

the superior performance of the control action monitoring.
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4. Monitoring the Control Action

MacGregor19 suggested that it may be useful to monitor the control action, as

the occurrence of a special cause such as a mean shift would lead to some larger

control actions than usual. Faltin and Tucker20 and Faltin et al.21 also addressed

the issue of control action monitoring. This idea was followed by Messina et al.24

for an integrated EPC/SPC system and Tsung et al.11 for a throttle position sensor

(TPS) assembly process.

If there is a shift in the process mean, a corresponding control action is needed

to bring the process back to the normal state. The rate of such application can

be instantaneous or gradual depending on the EPC controller. Thus, the feasibility

and efficiency of control action monitoring depends on the design of EPC controller,

the estimation of control action variance, and the determination of SPC control

limits. Although control action monitoring may be one possible solution to overcome

the limitations of conventional SPC, no one pointed out the reason why it is a

promising alternative when output monitoring is ineffective. This may be explained

by the finding that disturbance variation and process change can be transferred

from the process output to the control action in a EPC controlled process: we

consider an EPC controlled process with the same dynamic model as in the previous

section. Let the disturbance dt be described by an autoregressive moving average

(ARMA(1,1)) model:

dt = at(1− θB)/(1− φB) (7)

where |φ| < 1 and |θ| < 1, and at represents white noise. Let B be the usual

backward shift operator, i.e., Bat = at−1. This model represents a large num-

ber of stationary disturbance processes in industry.22 Also, it is approximately an

IMA(0,1,1) model when its autoregressive parameter φ is close to 1. Note that the

process variation before implementing EPC is

σ2
d = σ2

a(1 + θ2 − 2φθ)/(1 − φ2) . (8)

Then the process output after EPC is

et+1 = yt+1 + dt+1 = xt + dt+1 . (9)

The MMSE control scheme under an ARMA(1,1) disturbance is given by Box

et al.22

xt = et(θ − φ)/(1− φB) . (10)

Note from Eq. (10), when φ = θ this control scheme suggests no control: xt = 0.

This is because the ARMA(1,1) disturbance process reduces to i.i.d. white noise

when φ = θ,22 thus in this situation the best suggested control action is not to adjust

the process, which is consistent with Deming’s philosophy.23 With MMSE control,

we can see from Eqs. (9) and (10)the variation of process output σ2
e significantly
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reduces to σ2
a. On the other hand, the variation of the control action xt is

σ2
x = var(at(θ − φ)/(1 − φB)) = σ2

a(φ− θ)2/(1− φ2) . (11)

Then from Eqs. (8) and (11) it can be shown that

σ2
x = σ2

d − σ2
e

which explains the “missing” variation in the process (see Table 1).

Table 1. The Variation Transfer due to MMSE Control for an
ARMA(1,1) Disturbance Process.

Variation Before EPC After EPC

Variation of the Process Output σ2
d σ2

a

Variation of the Control Action 0 σ2
d − σ2

a

Total Process Variation σ2
d σ2

d

Thus, the monitoring of the control action identifies another opportunity to

detect unexpected process change and large process variation, which may be missed

by the monitoring of the process output.

The monitoring of the MMSE control action under an ARMA(1,1) disturbance

process has been studied by Messina et al.24 As the control action is usually corre-

lated, they suggest monitoring the forecast errors of the control action. We consider

a shift in the process mean µt is introduced to an ARMA(1,1) process as a single

step change starting at time 0. Hence, from Eqs. (9), (7) and (10), the process

output is

et = µt(1− φB)/(1 − θB) + at . (12)

We can see that et reduces to at as µt = 0.

To monitor the forecast errors of xt, we obtain the MMSE forecast of xt by Box

et al.,22

x̂t = φxt−1 . (13)

Thus, from Eqs. (10), (12), and (13), the forecast error of xt is

xt − x̂t = (θ − φ)

(
1− φB
1− θB µt + at

)
. (14)

Comparing Eqs. (12) and (14), we can see that the forecast error of the MMSE

control action is proportional to the process output with scale change. Therefore,

there is no difference between monitoring the process output and the forecast errors

of the control action.

However, as we pointed out earlier that in some cases the monitoring of the

control action is superior to that of process output, so some of the information

for detection is definitely missing after subtracting the one-step MMSE forecast
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of the control action. As it is not desirable to ignore any of the information for

detection from the observations, the forecast error monitoring of the control action

is not recommended in practice. Instead, we suggest directly monitoring the control

action with modified control limits.

5. Monitoring Either the Input or the Output

Although we show the superiority of monitoring the control action in some situa-

tions, the performance of monitoring the control action is not always better than

that of monitoring the process output. Different disturbance processes may lead to

very different performance of both the input and output monitoring.

To give more insight into their properties, simulated examples of ARMA(1,1)

disturbance processes with MMSE control are provided. The disturbance processes

are generated according to Eq. (7), with a shift of 2σd in the mean introduced

at time zero. The observed control actions and process outputs are calculated by

Eqs. (9) and (10). The control actions and the process outputs are monitored by

separate individual Shewhart charts. The performance of these charts is measured

by their average run length (ARL), which is the average number of time periods

before indicating an out-of-control condition (i.e., an observation falls outside the

control limits). The ARL for an in-control process is called ARL0, and the ARL for

an out-of-control process is called ARL1.

The control limits for the process output monitoring are set at ±3σa to have

an ARL0 of about 370. This is equivalent to false alarm rate of 0.27%. As the

control actions are correlated, the control limits for the control action monitoring

are modified to be ±(φ− θ)/
√

1− φ2Lσa by (11), where L is determined through

simulation to obtain an ARL0 of about 370. In this study, the modified constants

L range from 2.86 to 2.87, which depend on φ and θ.

Here a 2 by 2 full factorial design with four different combinations of the

ARMA(1,1) parameters φ and θ is run to investigate the entire parameter space.

Note that the objective here is to compare the performance of the input and output

monitoring under different disturbance processes. A guideline to suggest a suitable

monitoring scheme will be provided later. Since it is frequently observed that the φ

value is larger than the θ value,25 the experimental φ values are chosen to be −0.8

and 0.8, and the experimental θ values are chosen to be −0.5 and 0.5. Each process

is simulated 10,000 times in order to obtain the ARL value. Their performances are

summarized in Table 2.

Figures 1(a1) to 1(d2) show Shewhart charts for the control actions and the

process outputs, and the dashed lines show the corresponding deterministic mean

shifts. Note that after EPC, the mean of the process outputs is no more a sustained

step change, but a shift with dynamic pattern, as is the mean of the control actions.

Example (a) is simulated from an ARMA(1,1) process with φ = 0.8 and θ = 0.5.

From Fig. 1(a2), for the monitoring of the process outputs there is a mild overshoot

of the deterministic mean shift at the beginning, but the transient period is very
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Table 2. Summary of ARL Results of the Simulated Examples.

ARMA(1,1) Control Action Process Output

Parameter Monitoring Monitoring

Ex. φ θ ARL0 ARL1 ARL0 ARL1

(a) 0.8 0.5 370.4 7.6 370.4 40.9

(b) 0.8 −0.5 370.6 10.3 370.4 4.6

(c) −0.8 0.5 370.2 1.5 370.4 1.0

(d) −0.8 −0.5 370.4 56.2 370.4 2.9

short. The steady state magnitude of the process outputs gradually approaches a

small constant, so a Shewhart chart is not useful, and its ARL1 value is 40.9. In

this case, the mean shift was detected in 24 observations.

From Fig. 1(a1), for the monitoring of the control actions, there is no overshoot,

but the steady state magnitude is very large. Thus, it is effective to detect out-of-

control conditions by monitoring the control actions in this situation, and its ARL1

value is 7.6. In this case, the mean shift was detected in nine observations. For the

disturbance processes near this parameter region, the monitoring of the control

actions is preferred to the monitoring of the process outputs.

Example (b) is simulated with φ = 0.8 and θ = −0.5. The process output

monitoring in Fig. 1(b2) shows there is a larger overshoot than that in Fig. 1(a2),

which may lead to fast detection of out-of-control conditions, so its corresponding

ARL1 value is small. However, the steady state magnitude is quite small right after

a short transient period. In this case, the Shewhart chart missed the window of

opportunity and could not detect the mean shift within 50 observations. The control

action monitoring in Fig. 1(b1) shows there is a large steady state magnitude after

the transient period. Thus, as in Example (a), it is also effective to detect out-of-

control conditions by monitoring the control actions in this situation. In this case,

the mean shift was detected at the 16th observation.

Example (c), with φ = −0.8 and θ = 0.5, demonstrates a situation where both

the control action monitoring and the process output monitoring are effective, as

both ARL1 values are within 2. In both Figs. 1(c1) and 1(c2), the overshoots are

large and the steady state magnitudes are even larger than the original magnitude of

the mean shift. These results are caused by the large negative autocorrelation of

the disturbance process. In this case, the mean shift was detected within three

observations in both charts.

Example (d), with φ = −0.8 and θ = −0.5, shows a opposite situation to Exam-

ples (a) where the process output monitoring is more effective. From Fig. 1(d1), both

the overshoot and the steady state magnitude of the control action observations are

small, so it is not effective to detect out-of-control conditions by monitoring the con-

trol actions, and its corresponding ARL1 value is 56.2. In this case the Shewhart
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Fig. 1. Shewhart Charts of the MMSE control actions and Shewhart Charts of the Process Out-
puts for Four Simulated ARMA(1,1) Disturbance Processes. Dashed lines show their corresponding
deterministic mean shifts.

chart of the control action monitoring can not detect the mean shift within 50 obser-

vations. On the other hand, from Fig. 1(d2), its overshoot is small, but the steady

state magnitude is very large. Thus, it is quite effective to detect out-of-control

conditions by monitoring the process outputs, and its ARL1 value is 2.9. Here the
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mean shift was detected at the fifth observation. For the disturbance processes near

this parameter region, the monitoring of the process outputs is preferred to the

monitoring of the control actions.

6. Joint Monitoring Strategies

In practice, we usually do not know whether monitoring the process output or

monitoring the control action is better unless the process model is exactly known.

Here joint monitoring strategies taking into consideration both the process output

and the control action are shown to be more robust and more promising methods.

Several joint monitoring strategies are described as follows, and their pros and cons

are discussed.

6.1. Combined monitoring of the output and the forecast error of

the control action

A straight-forward strategy is to use one SPC chart to monitor the process output

and use another SPC chart to monitor the control action. The out-of-control con-

dition is detected when one of the charts is signaled. Messina et al.24 suggest the

combined monitoring strategy to monitor the forecast error of the control action

using tracking signals26 and an EWMA chart, and simultaneously monitoring the

process output using a Shewhart chart or an EWMA chart.

This strategy is simple and straightforward. No controller information is needed.

However, as discussed before, the forecast error monitoring of the control action is

not recommended because some of the information for detection is missing after

subtracting the one-step forecast of the control action. Also, the issue of false alarms

generated by their monitoring strategy is not studied in their paper. It is known

that if two separate charts are used simultaneously, their overall type I error will

increase, i.e., their overall false alarm frequency will increase.27 The overall false

alarm problem can be controlled by Bonferroni’s approach in Sec. 6.2.

6.2. Bonferroni’s approach

Bonferroni’s approach is to use two Shewhart charts to monitor the process output

and the control action simultaneously. It also uses Bonferroni’s inequality to modify

the control limits to ensure the value of the overall type I error.28 If the controller

and disturbance parameters are known, the control limits can be calculated.11

Otherwise, they can also be determined via historical process data.

This strategy is the simplest multivariate SPC method, and it gives acceptable

false alarm frequency. Tsung et al.11 show that for the situations with small cor-

relation between the input and output, Bonferroni’s approach may outperform the

other multivariate SPC methods such as Hotelling’s approach. This conclusion can

be extended to the other Bonferroni-type charts, such as the Multivariate CUSUM

charts by Woodall and Ncube,29 which monitor each of the quality characteristics

individually with CUSUM charts.



March 17, 2001 11:49 WSPC/122-IJRQSE 00032

A Note on Statistical Monitoring of Engineering Controlled Processes 11

However, it is known to be a conservative approach because it does not give

exact type I errors. It is even less powerful as it does not use the information of the

covariance structure between the control action and the process output.

6.3. Hotelling’s approach

Hotelling’s approach is to monitor the Hotelling’s T 2 statistics of the control action

and process output.30 It measures the overall distance of the observations from

the reference values. This approach requires knowledge of the covariance matrix

between the input and output. If the controller and disturbance parameters are

known, the covariance matrix can be derived.11 In other cases, the covariance matrix

is estimated from the historical data, but its distribution shifts from a χ2 to an

F distribution.

This is a popular multivariate SPC method due to its optimal property.

Hawkins31 pointed out that based on standard multivariate theory, the optimal

affine invariant test statistic for a shift in the mean vector of the single observation

vector to some other unspecified vector is the Hotelling’s T 2 statistic. Hotelling’s

approach is superior to Bonferroni’s approach in that the former gives exact type

I errors while the latter gives conservative type I errors. Tsung et al.11 show that

in the situations with large correlation between the input and output, Hotelling’s

approach may dominate. This conclusion can be extended to the other Hotelling-

type charts, such as the multivariate CUSUM charts by Alwan,32 which monitor a

CUSUM of the T 2 statistics.

However, Hotelling’s approach requires the extra knowledge of the covariance

σe,X . If the calculation of σe,X from the estimated model would incur a significant

error, its advantage may be eroded and may even perform worse than the other

SPC methods.

6.4. Principal component monitoring

Sometimes multivariate SPC charts are not feasible for industrial practitioners. It

may be more desirable and practical to use conventional univariate SPC methods

such as a Shewhart chart to monitor a combination of the input and output. Princi-

pal component analysis (PCA) techniques are suggested to identify the best linear

combination of the output and control actions for applying conventional SPC charts.

This approach is more economical and easier to implement as it only needs con-

ventional univariate SPC charts such as Shewhart charts. The PCA model to obtain

the input-output combination can be built up by historical data.33 However, as in

Hotelling’s approach, the principal component monitoring strategy also requires the

knowledge of the covariance structure between the control action and the process

output. It is possible that the covariance structure, i.e., the relation between the

control action and the process output, may change with time, as may its associated

PCA model. Thus, Tsung12 proposes an adaptive principal component monitoring
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scheme to update the PCA model adaptively by monitoring the residual, i.e., the

squared prediction error of new input-output observations.

7. Conclusion

Partly because of the renewed interests in the integration of SPC and EPC, the

statistical monitoring of EPC-controlled processes is shown to be an important

issue for both academic and industrial practitioners. The consideration of some

commonly used EPC and disturbance models, in this paper, is a starting point for

such studies, and its study may shed some light on the general problem.

In this paper, limitations of conventional control charts for an EPC controlled

process are illustrated by exploring the “window of opportunity” problem. The

analogous relation between the forecast-error monitoring in autocorrelated SPC

schemes and the monitoring of an EPC controlled process is demonstrated. The

variation transfer between the process output and the control action during EPC

is also identified. To conquer these identified limitations and problems, several

joint monitoring strategies are introduced, such as the combined monitoring of

the output and the forecast error of the control action, the Hotelling’s approach,

the Bonferroni’s approach, and the adaptive principal component monitoring.

Note that a goal of these monitoring schemes is to identify root causes of

variability and changes in the system, with the purpose of properly correcting for

these and gaining a fundamental understanding and improvement of EPC-controlled

process. Exactly how the detection, isolation, and identification of the root causes

should be conducted under the integrated environments of SPC and EPC warrants

further research.34
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