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SUMMARY AND CONCLUSIONS 
 

A lot has been said and published about the limitations of 
reliability predictions based on the models first introduced by 
MIL-STD-217 (now MIL-HDBK-217) and commercialized 
by many. Some of the information in the literature denounces 
these methods as inaccurate and unreliable and promotes 
qualitative methods of ensuring reliability such as 
HALT/HASS, or quantitative methods such as Physics of 
Failure, Accelerated Life Models, etc. This paper will present 
the merits and limitations of reliability predictions as 
contrasted to reliability testing and assurance techniques from 
a product development standpoint. It will also attempt to 
answer questions such as: are MIL-based reliability prediction 
methods useful? At what stages of the product development 
process? Which elements of the prediction can be practically 
used, and which should be discounted? How can the accuracy 
of reliability predictions be improved? Every method offers a 
certain benefit at a certain cost, is limited by a time element. 
No single answer exists in accurately predicting and 
demonstrating reliability. Balancing cost, benefit and time, the 
essential elements of a new product reliability & quality 
assurance program, provide a framework for selecting the 
methods. Specific, theoretical and practical examples will be 
used to demonstrate the concepts and illustrate the methods 
that have been successfully used with encouraging results. In 
addition, useful interpretations of reliability predictions will 
be presented, since it appears many popular misconceptions 
exist in the electronics industry. 
 

1. INTRODUCTION 
 

Reliability prediction methods and data, based on 
MIL-STD-217 (now MIL-HDBK-217) have been used for 
decades as a means to consistently produce an estimate figure 
for the predicted reliability of a product. However, these 
methods and data have been denounced by some reliability 
professionals as inappropriate due to their lack of accuracy. 
Other methods involving qualitative and quantitative 
techniques have been promoted to predict and improve the 
reliability of a product. Since one of the main reasons to 
predict reliability is to ultimately improve reliability, the 
alternatives to U.S. military-based (MIL-based) reliability 
predictions make a lot of sense. An entire industry of 
reliability consultants and companies has been created to 
fulfill demand for products and services towards reliability 
improvement and improved reliability predictions. Are these 
people bashing the MIL-based reliability prediction methods 
to promote their own interests or is there a merit to their 
allegations? Perhaps both are true to one extent or the other. 

Many studies indeed indicate that predictions based on 
MIL-STD-217 or derivative products do not agree with each 

other, and are far from accurately predicting product 
reliability. It has been shown that results using these reliability 
prediction methods are usually conservative, and in many 
cases, the actual product reliability is several times better than 
the one predicted. However, the MIL-based reliability 
predictions are still extensively used and, more often than not, 
required by many customers. 

If a model or process is not utilized correctly, then the 
popular cliché “garbage in, garbage out,” becomes a reality. 
Many examples can be cited in various industries where 
mathematical models are used to predict physical behavior. 
Finite Element Analysis (FEA) and Computational Fluid 
Dynamics (CFD) are some of the tools used extensively in the 
electronics and other industries to properly design and predict 
behavior of physical elements. The success of modeling using 
any tool or method will greatly depend on the experience and 
skill of the user, and how the model is used. The more flexible 
or powerful the model, the worst the blunder, if not used 
properly. 

Models can only approximate reality. As such, they are 
inherently inaccurate (the extend of inaccuracy depends on 
one’s definition of accuracy) and their value is higher in 
comparative studies than exact results. Human-related factors, 
such as design, test, skill, training, quality, service & 
maintenance are directly coupled to reliability and extremely 
difficult to forecast, quantify or model properly, regardless of 
the method used. In addition, the comparison of prediction 
results and field failures can be completely characterized only 
when all products have failed and true times to failure have 
been recorded. 

Every method and process has advantages and limitations. 
The reliability professional should capitalize on the 
advantages while observing the limitations. No single method 
is a remedy for all problems. Several methods should be 
employed at different points in time, or during the product 
lifecycle, to properly predict, assess, characterize and improve 
product reliability. 
 

2. THE CONSTANT FAILURE RATE ASSUMPTION 
 

MIL-based reliability predictions based on constant failure 
rates, first introduced by MIL-STD-217, have been used for 
many years to estimate product and system failure rates and 
Mean Time Between Failures (MTBF). Numerous other 
commercial standards have spawn from MIL-STD-217 
(Table A). The main premise is that reliability depends on a 
Parts-Count and Parts-Stress approach, where the reliability of 
individual components determines the reliability of the system 
or product. This is represented by simply adding the 
individual component failure rates to derive the total product 
failure rate. In addition, the main assumption, and the one that 
is challenged the most, is that failure rates of components are 
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constant or failures are exponentially distributed. 
 
Table A: Reliability Prediction Models/Standards 
 

Model Description 

MIL-HDBK-217 Original worldwide standard (MIL-STD-217) for 
commercial & military electronic components 

Telcordia SR-
332 

Original Bellcore standard for commercial grade 
electronic components 

PRISM Originally developed by the Reliability Analysis 
Center (RAC), incorporates process grading factors 

CNET 93 Developed by France Telecom 
RDF-2000 Newer Version of CNET 93 developed by UTE 
HRD-5 Developed by British Telecommunications plc 
GJB/z 299B Chinese Standard 

 
Although intuitively the constant failure rate assumption 

may seem unrealistic, consider the following: The typical 
electronic product has a lifecycle (from production release to 
end-of-life) between 2 to 5 years. In this time period of 
interest, and after the initial “early failure” stage, the 
constant failure rate (FR) assumption may not be 
unreasonable because most of the components in a product 
have not reached their wear-out stage. Even though in reality 
the FR may be slightly decreasing (depending on the length of 
the “early failure” stage), or increasing (beginning of wear out 
stage), it can be assumed to be constant for most practical 
purposes. The assumption of constant FR also greatly 
simplifies the mathematics involved in reliability calculations. 
If distributions other than the exponential are used, the 
accuracy of the prediction may improve, but the mathematics 
complexity will increase by several orders of magnitude. If the 
constant FR methods are used and interpreted properly, the 
penalty of a slight inaccuracy may worth the benefit of 
mathematical simplicity. 
 
3. THE MEANING OF MEAN TIME BETWEEN FAILURES 

 
Based on these assumptions the system failure rate (λSystem) 

and Mean Time Between Failures (MTBF) or Mean Time to 
Failure (MTTF) are represented by: 
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Many reliability professionals have denounced the 
constant FR assumption as unrealistic and inappropriate in 
estimating or predicting reliability. At first glance this 
statement makes a lot of sense. Since constant FR does not 
vary with time, the implication is that a component or a 
system does not age or wears out. From life experience, it 
should be evident to everyone that time progression does 
indeed increase failure rate. Products do age and wear out 

displaying much higher failure rates as time passes. 
Even if the constant FR assumption sounds unreasonable 

at the beginning, what is the physical meaning of MTBF in 
terms of actual product failures? Based on the mathematical 
representation of the exponential distribution, the probability 
of failure F(t) for the exponential distribution (constant failure 
rate) is, 

tetF λ−−= 1)(  or MTBF
t
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−
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This result indicates that by the time the MTBF of a 
product is reached, 63.2% of the products in the field would 
have failed at least once. Contrary to some beliefs and 
mathematical treatment, MTBF should not necessarily be 
interpreted as that, on the average a product will fail at the 
time indicated by the MTBF, or that an average product is 
supposed to be operational when the time designated by the 
MTBF is reached. 

As an example, consider the MTBF of a product stated at 
500,000 hours or with the corresponding failure rate of 2,000 
FIT. The 500,000 hours can be converted to years (assuming 
24-hour operation of a product), 

years

year
hours

hours  57    
8,766

1     000,500 =×  

thus, 63.2% of the products will experience a failure in 57 
years, or the probability that one product will fail in 57 years 
is 63.2%. Although mathematics indicate a mean life of 57 
years, in reality the product would have failed long before 57 
years due to wear out. Perhaps for some reliability 
professionals these numbers are useful, but for the average 
practitioner in the electronics industry these numbers are still 
cryptic and provide little insight. If the same number is viewed 
from another angle, such as expected failures per year, it will 
start making better sense. In this example, if the FR of the 
product is 2000 FIT, then the average failure rate (AFR), 
sometimes called the cumulative FR is defined as, 
 

ttAFR
HoursOnPower

FailuresofNumber ×=×=
  

  λ                                    (7) 
 

and, for one year , the AFR is, 
 

1.75%or     0.0175  8,766     10000,2
year

failures
year

hoursfailures9 =×× −
hour

 

In other words, an MTBF = 500,000 hours can be viewed 
as a 1.75% average yearly failure rate, and if 1,000 units are in 
the field, it should be expected that ~18 units will fail in the 
course of one year. This is probably one of the most useful 
interpretations of MTBF for most people. The MTBF can be 
simply considered as a mathematical figure used to produce an 
average yearly failure rate. Note that equation (7) does not 
presuppose an underlying distribution and MTTF (Mean Time 
To Failure) can be used instead of MTBF, which is only 
applicable to the exponential failure distribution. 

In the same fashion, the probability of failure, F(t) can be 
considered as an indication of failure rate, and for one year 
using the exponential failure distribution can be calculated as, 

RAMS 2004 - 353 - 0-7803-8215-3/04/$17.00 © 2004 IEEE



MTBF

t

etRtF
−

−=−= 1)(1)(                                            (8) 

1.74%or  0174.01)(1)( 000,500
766,8

766,8766,8 =−==−==
−

etRtF
 

From the results of equations (7) and (8), can be seen that 
the AFR and F(t) are practically identical, but not exactly the 
same.  In fact, for low MTBFs, the AFR and F(t) results will 
diverge even further as seen in Figure 1. 
 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 30 40 50 60 70 80 90 100 110
MTBF (Thousands Hours)

AFR

F(t)

 
 

            Figure 1:  Effect of MTBF on AFR & F(t) 
 

Only for MTBFs >~50,000 hours the results converge to 
become identical for practical purposes. Caution should be 
exercised when using averages such as equation (7), since the 
results may be overly conservative for low MTBFs. 

The reason for this difference is that F(t) considers the 
original population of units in the field, while AFR considers 
an ongoing population with additional infusion of units and 
repaired or replaced units that failed. 
 

4. RELEVANCE OF CONSTANT FAILURE RATE 
 

The constant FR assumption can be a good approximation 
of product field failures depending on the product lifecycle 
and nature of product. Figure 2 shows the typical constituent 
graphs of the “bathtub” curve: an early failure region 
(decreasing FR), a constant FR region (useful, normal, or 
service life) and a wear-out region (increasing FR). The FR of 
an electronic product with a maximum lifecycle of five years 
can be approximated well with a constant FR as shown in 
Case I. During the product’s lifecycle, the FR is first under-
estimated (early failures) and then over-estimated by the 
constant FR. The early failures can be attributed to production 
ramp-up issues and/or due to TTM pressures of a product that 
has been introduced into the market prematurely.  Releasing a 
product before all the early failure root causes have been 
identified and corrected, will increase the FR for the initial 
time period. On the average, the constant FR assumption 
seems to be fairly valid in this example due to error averaging. 
However, in Case II, where the product lifecycle is ten years, 
the constant FR may not be a good assumption since the 
failure rate is grossly underestimated in the last five years. As 
a result, spares over-purchased (due to FR overestimation) in 

the first five years may have exhausted their shelf-life, before 
they are actually needed in the wear-out period.  
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Figure 2: Constituent Curves of the “Bathtub” Curve 
 

5. MIL-BASED VS. OTHER METHODS 
 
Reliability methods can be classified in four major 

categories: reliability predictions, qualitative methods, 
quantitative methods, and analytical methods. 

Reliability predictions are based on database tools, such as 
MIL-HDBK-217, Telcordia SR-332, etc. Qualitative methods 
involve aggressive testing such as HALT/HASS, ESS, HAST, 
etc. Quantitative methods employ techniques such as Finite 
Element Analysis (FEA), Physics of Failure (PoF), etc. 
Analytical methods are a blend of reliability prediction tools 
and quantitative methods (Weibull analysis, life stress 
distributions, etc.). 

MIL-based reliability prediction methods are mainly used 
to establish a baseline reliability figure while the design is still 
on paper. The components that comprise the product along 
with projected stresses and end-use environmental conditions 
are needed to derive a reliability prediction. Databases provide 
failure rates for different types of components. The databases 
are constructed by supplier-provided “field” failure data. Since 
field failures depend mainly on design and application, these 
data are not representative of all cases. By including as much 
data as possible, these databases tend to provide over 
conservative failure rates. No single model covers all 
components, and a combination of models may provide the 
best coverage.  These methods are likely to provide more 
accurate results for a system containing more parts rather than 
for a small system due to variance averaging. 

Qualitative methods are mainly employed to improve the 
reliability of a product rather than measure or derive it. These 
methods involve some type of accelerated testing 
environment, where the product is subjected to elevated 
stresses to precipitate latent failures or design weaknesses. 
Actual products and specialized equipment are needed to 
employ these methods. The benefit realized is considerable, 
but the cost and time demands may also be considerable 
depending on the type and extend of testing. The techniques 
used, occasionally precipitate failures due to the testing 
environment or method rather than the field or use 
environment. In addition, results may not be consistent across 
identical products, due to inconsistencies in the testing 
environment. 

Quantitative methods are computationally intensive since 
the reliability of the product is derived mostly via computer 
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simulation analysis. They require a design that can be modeled 
in a computer and a plethora of supporting data. Results can 
be fairly accurate, depending on the skill level and data 
availability of the modeling. However, using quantitative 
methods can be tedious, time-consuming, challenging, and 
may conflict with the aggressive TTM requirements of today’s 
electronic products. 

Analytical methods are a mixture of prediction and 
quantitative methods and require data obtained using 
qualitative techniques. These methods can provide quite 
accurate results in terms of deriving, measuring or proving 
reliability. They are versatile in terms of modeling without 
being limited to the exponential distribution. However, some 
of the required data are obtained by testing actual product. 

Table B provides a comparison of the different methods in 
terms of their suitability for a particular task. 

 
Table B: Suitability of Reliability Methods 

 
 Reliability 

Predictions 
Qualitative 

Methods 
Quantitativ
e Methods 

Analytical 
Methods 

Steady State 
Reliability 
Prediction 

Yes (H), 
C(L) No (L) No (M) Yes (H), 

C(M) 

Lifecycle 
Reliability 
Prediction 

No (L) No (M) No (M) Yes (H), 
C(M) 

System 
Availability 
Downtime, 

Outage 

Yes (H), 
C(L) No (L) No (M) Yes (H), 

C(L) 

Reliability 
Improvement 

Yes (M), 
C(L) 

Yes (H), 
C(H) 

Yes (M), 
C(H) 

Yes (M), 
C(L) 

Competitive 
Analysis 

Yes (H), 
C(L) 

Yes (M), 
C(H) 

Yes (M), 
C(H) 

Yes (H), 
C(M) 

Warranty 
Determination 

Yes (M), 
C(L) No (L) No (M) Yes (H), 

C(L) 
Repair Cost 

Determination 
Yes (M), 

C(L) No (L) No (M) Yes (H), 
C(L) 

Maintenance  
Cost 

Determination 

Yes (M), 
C(L) No (L) No (M) Yes (H), 

C(L) 

Spares 
Determination 

Yes (M), 
C(L) No (M) No (M) Yes (H), 

C(L) 
Result 

Confidence Low High Medium Medium 

Yes (H): Well suited 
Yes (M): Can be done, with limitations 
No (M): In general, not well suited, can be used in certain cases 
No (L): Not well suited 
C(L, M, or H): Low, medium, or high cost and effort 

 
Can a model or method predict and/or help improve the 

reliability of a product? Yes and no. Depends how it will be 
used, how the results will be interpreted, and what actions will 
be taken based on the results. Are the actions effective? Only 
the field failure rate will determine the answer. 

Is one method better than the other? Depends on one’s 
philosophy and interests. Proponents of each method will 
defend their beliefs, often at the exclusion of other methods. A 
combination of models and processes is probably a better way 
of assessing and improving the reliability of a product. Every 
method has advantages and limitations and no method is 
appropriate for everything. 

 
6. NEEDS FOR RELIABILITY PREDICTIONS 

 
Some of the potential needs for reliability predictions in 

the electronics industry are: 
1. Reliability Improvement. Using fewer or low FR 

components will result in lower field failures. Lower 

temperatures and higher derating will improve reliability. 
2. Design Tradeoffs. Choices between using a large number 

of low FR components versus using a lower number of 
high FR components. Component grade selection 
(industrial vs. commercial, etc.). 

3. Lifecycle Cost. Determination of total product cost, on a 
yearly or lifecycle basis. 

4. System Availability. Uptime and downtime prediction 
along with redundancy schemes to improve availability. 

5. Competitive Analysis, Benchmark. Comparing MTBFs of 
competing products to get a first approximation of the 
products’ inherent reliability as predicted by models. The 
higher the complexity of the product, the higher the 
probability of defects in the field. A common, consistent 
procedure has to be used to compare “apples with 
apples.” It may not be totally accurate since reliability is 
design-dependent, but it provides a first order of 
comparison. 

6. Warranty. Selection of a suitable warranty period. 
Overestimating the warranty period will increase total 
lifecycle costs, while underestimating could render the 
product less competitive as compared with like products. 

7. Repair Cost. The cost of repairs during the warranty 
period. These are part of the product total cost that needs 
to be factored in during product pricing. 

8. Maintenance Cost. Assessment of costs related to 
preventive maintenance of a product. High FR items will 
need to be replaced more often to minimize system 
downtime. 

9. Spares. Determination of number and type of spare parts 
at the customer or distribution sites. High FR items need 
to be stocked at higher numbers. 

How well a reliability prediction method can address the 
above outlined needs will determine its rate of success and 
ultimately its value. 
 

7. VALUE OF MIL-BASED RELIABILITY PREDICTIONS 
 
What is the best method to predict reliability of a product? 

Obviously, the method that will provide the most accurate 
results, in the least amount of time, with the least effort, and 
the least cost. 

The value of a reliability prediction, process, method, or 
any other concept, has to consider benefits and costs. Thus, 
the simple, well-known equation: Value = Benefit – Cost. If 
the cost outweighs the benefit there is no real value. In 
addition, there is an element of time involved due to market 
pressures sometimes called Time to Market (TTM). Then, 
value, benefit, and cost are all functions of time: 
V(t) = B(t)− C(t). The value of a reliability prediction will be 
different at different points in time, since the benefits and 
costs vary with time. 

The value of MIL-based reliability predictions is variable 
in time according to V(t) = B(t)− C(t), and depends on the 
product lifecycle phase. As seen on Figure 3, at the Concept 
phase, the value is quite high, reaching a maximum at the 
Development phase because the design is only on paper, with 
no product to test. The benefit B(t) is high since only black-
box methods can be used based on a bill of material (BOM) 
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and the cost C(t) is low since the prediction is easily derived 
from established models and databases. The increase in value 
from Concept to Development is attributed to the design 
maturity and detail of the product definition. 
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Figure 3: Value vs. Product Lifecycle 
 
In addition, when a new product gets introduced, the 

warranty period, maintenance and repair, and service support 
costs need to be determined to estimate the total cost of the 
product during its lifecycle. At this early stage, these 
quantities can only be estimated by a MIL-based prediction.  
From that point on, the MIL-based prediction methods 
decrease in value since Prototypes are built and the reliability 
of the product can start to be assessed via testing. 

The Other prediction methods (via testing, modeling or 
field failures) have low value at the early stages of the 
lifecycle, but the value increases rapidly after prototypes are 
available for testing and the product matures. The value 
reaches a maximum at the Pilot phase since the products tested 
are representative of the products going to the field. After 
Pilot, the value slowly decreases but remains fairly high due to 
the historical importance of the field failure data. The 
maximum value of the Other prediction is shown as somewhat 
lower than the one for the MIL-based prediction because 
although the benefit of the Other prediction is high, the cost of 
acquiring this type of data is also high. 

 
8. RELIABILITY PREDICTION VS. FIELD FAILURES 

 
Based on several examples of telecommunication products 

from different companies, the failure rate behavior of a typical 
product “A” can be seen on Figure 4. 

To protect proprietary information of the companies’ data 
used to construct this graph, the FR numbers shown have been 
modified from the actual. Also, defects due to “No Defect 
Found (NDF),” customer errors, and certain abnormalities 
such as an occasional lot of defective parts, product abuse 
during shipment, etc., have been removed. 

Product “A” reliability prediction on the concept and 
development phase resulted in a FR=5%. The expectation of 
this type of product was a FR=1%. Data collected from 
product “A” field failures for 2 years yielded an average 
FR=2%. During the first six months, the FR has large 
fluctuations since few products are in the market, a small 
number of failures will have a large effect on the FR, and 
some early failures will escape the factory. After six months, 
the FR seems to stabilize, until the 9th month where it 
suddenly sharply increases. This is typical of a large customer 

or distributor accumulating failed units and shipping them to 
the service or repair center all at once. After the first year, the 
FR seems to be fairly stable at ~2%, slightly increasing with 
time.  
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Figure 4: Typical FR Behavior of a Telecom Product. 
 

The predicted FR is ~2.5 times higher than the actual. This 
is expected since MIL-based reliability prediction models are 
inherently conservative. Telcordia SR-332 indicates that 
reliability predictions using the generic failure rates in the 
model are “90% upper confidence level point estimates. This 
means that there is a 90% chance that the actual device 
generic failure rate is lower...” And, “there is at least a 90% 
chance (e.g., perhaps a 95% chance) that the actual failure rate 
for a unit is lower than the value predicted…”  Furthermore, 
the data used on MIL-based predictions are usually outdated 
(conservative). By the time data are collected, compiled, 
verified, published, and used, supplier improvements on 
component design and manufacturing may have rendered 
components more reliable. 

In addition, using this model is valid for only the middle 
section of the “bathtub” curve, which best approximates a 
steady state or constant failure rate. Typically, early failures 
are screened out in the factory, and wear out for electronic 
components are much beyond the 2-5 years, which is the 
lifecycle of a typical telecommunications electronic product. If 
the product is designed for operating much longer than 
5 years, then a different approach should be employed for 
predictions in the wear out region of the bathtub curve. 

Based on product “A” history, a first approximation in the 
reliability prediction of a subsequent product “B,” can use the 
2.5 correction factor to bridge the gap between predicted 
(using a model) and actual reliability. This approximation 
technique has been used very successfully in the past with 
accuracy ranging from 80% to 100%. The black box reliability 
prediction can be used as a baseline, and with the appropriate 
correction factor, the true reliability can be approximated. 

If the typical reliability prediction model follows a black-
box approach, then the predicted reliability will be highly 
inaccurate (usually conservative rather than optimistic) 
depending on the model used and how it is used. Most of the 
time, the reliability prediction is several times more 
conservative than the actual field behavior. Several methods 
can be employed to improve accuracy, such as laboratory and 
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field data from suppliers, along with company laboratory and 
field data (Figure 5). 
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Figure 5: True Reliability Convergence with Data 
Infusion. 

 
With every infusion of more deterministic data, the 

prediction becomes more accurate approaching the true 
reliability of the product.  Typically, a predicted and a 
demonstrated reliability will be required from a supplier.  The 
demonstrated reliability is usually derived from supplier 
laboratory (new product) or field (existing product) data. Even 
the laboratory methods, which use some type of life 
acceleration technique, would not reveal the true nature or 
time of failures. This is because debatable acceleration models 
are used for calculations, failures may be induced due to the 
testing method, and the products are tested under controlled 
conditions, while in the field, conditions are not controlled and 
unpredictable. 

Many other factors are involved in field failures. A major 
factor is software, which has become a different reliability 
field by itself. Software is usually not adequately addressed in 
a MIL-based reliability prediction although it may count for a 
large number of failures in the field, and failures due to 
software can even be misconstrued as hardware failures. Other 
“soft” field failures such as cosmetic, labels, etc., are difficult 
to classify or predict and render field failure monitoring a 
challenge. 

Comparing prediction to field failure data is a challenge 
due to the time it takes to accumulate, receive, and process 
meaningful data from the field. Furthermore, field data are 
biased due to usage, timing, and conditions. Simple processing 
of this highly convoluted data, without detailed knowledge of 
the time and cause of failure, can lead to incorrect 
conclusions. 
 

9. CONCLUSIONS 
 

MIL-based reliability prediction methods are consistent, 
mathematically simple, but inherently inaccurate, usually 
erring on the conservative side. This limitation may be 
overcome with the use of historical data and appropriate 
correction factors rendering reliability predictions quite 
accurate on a practical level. The reliability predictions should 
not be taken at face value, but as a figure of merit or adequate 
baseline towards comparative studies of design alternatives, 
evaluation of competitive products, or early forecasting of the 
total lifecycle cost of a product. The value of these methods is 
very high at the early stages of the product development where 
no physical product exists, but the value decreases rapidly as 
prototypes become available for testing. Employing these 
methods can increase the baseline reliability of a product, but 
since product reliability depends mainly on design and end-
use conditions, Mil-based reliability predictions are not 
appropriate in proving or improving the field reliability of a 
product. Other methods and techniques, which can be 
analytical, qualitative or quantitative, should be used to prove 
and improve the field reliability of a product. 
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