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SUMMARY & CONCLUSIONS 
 

In this paper, we define two accelerated life models for 
repairable systems: the Arrhenius-exponential model and the 
Peck-Weibull model. Thus, we show that is possible to 
estimate the reliability of a product during its development 
with a small number of prototypes using accelerated life 
testing with the ability to repair when a failure occurs. This 
method allows us to improve the accuracy in the estimation of 
reliability parameters where the accuracy is linked to the 
number of failure times that  are available. Nevertheless, these 
models assume “minimal repairing” such that any repair has 
no impact on the failure rate. 

 
1.  INTRODUCTION 

 
Industrial competitiveness in terms of innovation, time of 
development, and field reliability expectations leads to more 
efficient strategies to mature a product. In particular, 
engineers are looking for methods to evaluate the reliability, 
as cheaply as possible, knowing that the market demands 
continuously improvement in system reliability.  This leads to 
longer duration testing that may be incompatible with 
industrial constraints. In order to reduce test time, we can use  
accelerated life testing. In  these tests, systems are tested 
under a higher level of usage and/or environmental stresses in 
order to accelerate the failure mechanisms (assumed to be the 
same ones as those in nominal conditions) and so reduce the 
test time required to estimate behavioural characteristics of the 
product in nominal conditions. (see figure 1). 
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Figure 1 : Reliability assessment with accelerated tests 

Accelerating life testing solves this first aspect of the duration 
but there is an other problem. To evaluate the reliability 
during the development of a new product, we use prototypes 
which are expensive and therefore we have few specimens. In 
many cases, failures seen at the system level are due to the 
failure of one component (serial system). Thus, it is possible 

to repair (to change the failed component) and continue 
testing the system. (ref 4). For example, an electronic board 
where the failure can be induced by a capacitor failure can be 
easily repaired and testing resumed.  
In this paper we propose utilization of an Accelerated Life 
Testing (ALT) model for repairable systems. It’s necessary to 
know : 

• the analytic model which links the degradation rate to 
the severity and amplitude of the system usage.  

• the parameter values for the controlling variable of 
the chosen lifetime models, such as the activation 
energy in the Arrhenius model for example. 

 
2.  USUAL LIFETIME DISTRIBUTIONS, TEST PLANS WITH 

REPAIRING AND ACCELERATION MODEL 
 

2.1  Common lifetime distributions 
 
In an accelerated life testing, the behaviour of the product 

lifetime is not described simply by one relationship. For each 
stress level, the system is characterized by a statistical 
distribution of lifetimes. So we must combine an acceleration 
model and a lifetime distribution. We are going to present 
some of the usual distributions obtained with accelerated 
lifetime tests common to several fields. Some of their main 
properties, associated to reliability functions and failure rates, 
will be mentioned (ref. 1, 10). 

 
2.1.1 Exponential distribution 
 

This distribution models many applications in several 
fields. It is a simple distribution, very common in reliability 
where the failure rate is constant. It relates the lifetime of 
equipment characterized by random failures. The reliability 
function of an exponential distribution with a θ parameter is : 

θ
t

etR
−

=)(    [1.] 
Consequently, the failure rate is : 

θλ 1=)t(      [2.] 

2.1.2 –Weibull distribution 
 

A very popular distribution, applied in electronics as well 
as in mechanics and is a more accurate model for the 
behaviour of a product during the three usual stages of its life: 
infant mortality with a decreasing failure rate, constant failure 
rate, and wearout period with increasing failure rate. The 
reliability function of a Weibull distribution with η and β 
parameters is : 
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2.2 Test plans with repairing 
 

Suppose successive times to failure for a system 
(characterized by a failure rate λ(t)) are observed (ref 2-4, 10). 
The system is new at the initial time. When a failure occurs, 
the system is immediately repaired. The repair is assumed to 
be “minimal”. This means that the system functions properly 
but its failure rate is not modified. We consider a test plan 
with a fixed test time τ. During the test, n systems are placed 
under test where any failure is repaired immediately. The 
system i is observed until time τ, and the number of observed 
failures is Ki (random variable) and the times to failure are 

i
j

T  (0 ≤ j ≤ Ki) (see Figure 2). 
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Figure 2 : Record of failure times 

Intuitively, the failure-process intensity (for a repairable 
system) is a measure of the probability that a failure occurs 
shortly after T. The failure-process intensity can be a function 
of both the running time T and the local time t (see Figure 2). 
If the failure-process intensity is a constant, λ, there is a 
Homogeneous Poisson Process (HPP). This means that the 
times between failures are statistically independent and 
identically distributed with parameter λ.  
When the failure-process intensity is a function only of the 
running time T, the failures can occur according to a Non-
Homogeneous Poisson Process (NHPP). This situation is 
obtained if, for instance, we use a minimal repair policy, i.e., 
the unit is repaired to the state of the system just before the 
failure. One of the most popular NHPP models is the Weibull 
process model. 
 
2.2.1 Case of Homogeneous Poisson process 
 
The observation of system i is defined by homogeneous 
Poisson process with stochastic intensity λ in time interval 
[0,τ] (ref 2-4, 10). The log-likelihood is written  : 

( ) λτλλ nlogK)(L
n
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The estimator of failure rate λ is given by : 

τλ n

K
ˆ

n

i i∑
== 1    [6.] 

2.2.2  Case of non-homogeneous Poisson process  
 
In this section, a non-homogeneous Poisson process (with 
parameters β and η) is defined with stochastic intensity :  
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This process defines the times to failure of a system 
characterized by a Weibull distribution and which is subject to 
“minimal repairing” (ref 2-4, 10). The log-likelihood is 
written : 
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The maximum likelihood estimators β and η are deducted 
from :   
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2.3  Usual acceleration models 
 
2.3.1 Arrhenius Model 
 
This model is used when the failure mechanism is driven by 
temperature (especially for dielectrics, semi-conductors, 
battery cells, lubricant, grease, plastic, incandescent 
filaments). The Arrhenius model defines the lifetime τ of the 
product as a function of temperature (ref 1, 5, 6, 7, 8, 9) : 


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= kT
aE

Aeτ     [11.] 
With : A positive constant 
 Ea activation energy in eV 
 k Boltzman’s constant (8.6171 10-5 eV/K) 

T absolute temperature  
The Arrhenius acceleration factor between the lifetime τ1 for a 
temperature T1 and the lifetime τ2

  for a temperature T2 is : 
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2.3.2 Peck Model 
 
This model is used where the failure mechanism is driven by 
temperature and humidity (especially for electrical 
components, aluminium conductors and mechanical 
components submitted to breaking). 
The Peck model defines the degradation rate with a 
temperature T and a humidity level H given by the following 
relationship (ref 1, 5, 6, 7, 8, 9) : 
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with : T : absolute temperature (in °K) 

H : humidity in % 
k : 8.6171 10-5 eV/°K Boltzmann constant 
Ea : activation energy in eV 
m : constant 

 
3.  ACCELERATED LIFE MODEL ON REPAIRABLE 

SYSTEMS 
 

3.1 Application to exponential distribution coupled with  
Arrhenius   
 
In this section, an exponential lifetime distribution with an 
Arrhenius acceleration model will be presented. For that 
purpose, it is considered that : 

• The lifetime is defined by an exponential distribution 
• The test plan is defined in section 2.2.1 
• The scale parameter λ of the exponential distribution  

is defined by an Arrhenius model : 
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with  
i

i τλ 1=  and T0 the nominal temperature 

If it is posed : 
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Then, equation [14] becomes : 
( )ixaE

i e0λλ =    [16.] 
Which is the classical COX model. 
In order to define the model, the two unknown parameters Ea 
and λ0 have to be evaluated. For this purpose, two tests are 
realised under two temperatures (T1 and T2). At each 
temperature level, the values xi and λi are estimated : 
 x1 and x2 by relationship [15] 
 λ1 and λ2 by relationship [6] 
The parameters λ0 and Ea are estimated from relationship [16] 
in : 
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Numerical example : 
For this example, the simulation parameters are : 

• Ea = 0.37 eV (activation energy) 
• N= 5 (sample size by stress level) 
• λ0 = 5* 10-5 h-1 (baseline failure rate) 
• τ = 1000 h (censored time) 
• T0 = 30°C (nominal temperature) 
• T1 = 120°C (temperature for test 1) 
• T2 = 200°C (temperature for test 2) 

The test results are obtained by simulation (in drawing on cdf 
(1-R)) with these parameters (see Table1 and Table 2).  
The failure rates λ1 and λ2 are obtained in applying the 
Arrhenius model (eq [14]) : 
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The local failure times are simulated by : 
Temperature T1 = 120°C : ti = F(t)-1 with F(t) = 1-e-λ

1
t 

Temperature T2 = 200°C : ti = F(t)-1 with F(t) = 1-e-λ
2
t 

The absolute times are deduced by : 

∑
=

=
i

j
ji tT

1
 

Table 1 : Simulated test results with temperature T=120°C 
System 
index 

Time to failure Ti (in hours) and 
censored time in bold 

Failures number 
n 

1 397 872 1000 2 
2 1000   0 
3 646 1000  1 
4 850 851 1000 2 
5 69 1000  1 

The values x1 and λ1 are estimated (by [15] and [6]) : 

x1 = 8.788 
λ1 =1.2* 10-3 h-1 (instead of 1.28* 10-3 h-1) 
 
The values x2 and λ2 are estimated (by [15] and [6]) : 
x2 =13.76 
λ2 = 7.4* 10-3 h-1 (instead of 8.15* 10-3 h-1) 
The Arrhenius (Ea) and exponential (λ0) parameters can be 
estimated by relationships [17] and [18]. Thus, the precision 
of these values can be improved based upon test data. : 

• Ea = 0. 365 eV (instead of 0.37 eV) 
• λ0 =4.85* 10-5 h-1 (instead of 5* 10-5 h-1) 

It can be noted that the estimators values are close to initial 
data. 
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Table 2 : Simulated test results with temperature T=200°C 
System 
index Time to failure Ti (in hours) and censored time in bold n 

1 329 345 349 393 509 922 1000   6 
2 39 79 109 189 502 551 730 1000  7 
3 52 170 849 1000      3 
4 175 206 223 246 268 288 302 543 545 612 663 848 1000 12 
5 79 234 337 600 650 710 735 971 994 1000  9 

 

3.2 Application to Weibull distribution in considering an 
Peck acceleration model 

 
In this section, the accelerated life Weibull model will be used 
for step stress with a Peck acceleration model. For that 
purpose, it is considered that : 

• The lifetime is defined by a Weibull distribution 
• The test plan is defined in paragraph 2.2.2 
• The shape parameter β of the Weibull distribution is 

constant 
• The scale parameter η of the Weibull distribution is 

defined by a Peck model : 

kT
aE

meHA)H,T( −=η   [19.] 
In order to define the model, we have to evaluate A, m and Ea. 
For this purpose, three tests are performed with different 
temperature and humidity levels. The unknown variables are 
estimated by identification of terms between relations [10] and 
[19]. 
Numerical example : 
For this example, the simulation parameters are : 

• Ea = 0.51 eV (activation energy) 
• n= 5 (sample size by stress level) 
• m = 6.2 
• k = 8.6171* 10-5 eV/K Boltzmann’s constant 
• A = 8.75 105 days 
• β = 1.5 
• T1 = 65°C (Temperature for test 1) 
• T2 = 85°C (Temperature for test 2) 
• T3 = 85°C (Temperature for test 3) 
• H1 = 90% (Humidity for test 1) 
• H2 = 90% (Humidity for test 2) 
• H3 = 95% (Humidity for test 3) 

The test results are obtained by simulation (in drawing on cdf 
(1-R)) with these parameters (see table3, table 4 and table 5). 
The scale parameters η1, η2 and η3 are obtained in applying 
the Peck model (eq [19]) : 
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The failure times Ti are simulated by this method (see 
Figure 3) : 

T1 = F(t)-1 with 

β
η 





−

−=
t

e)t(F 1 and ],[)t(F 10∈  

T2 = F(t)-1 with 

β
η 





−

−=
t

e)t(F 1 and ],F[)t(F 11∈
  where F1=F(T1) 
… 

Ti = F(t)-1 with 

β
η 





−

−=
t

e)t(F 1 and ],F[)t(F i 11−∈
  where Fi-1=F(Ti-1) 

F(t)

0

1

T1 T2 Ti…

F1

F2

Fi

time
 

Figure 3 : Failure times simulation 
 

Table 3 : Simulated test results with T=65°C and H=90% 
Time to failure (in days) and censored time in bold

System 1 4.83 6.88 20.00 
System 2 20.00   
System 3 6.59 20.00  
System 4 20.00   
System 5 13.81 16.52 20.00 
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The Weibull parameters η1 and β1 are estimated by the 
relationships [9] and [10] : 

 β1 = 1.20 (instead of 1.5) 
 η1 = 20.00 days (instead of 26.93 days estimated by 
 [19]) 
 

Table 4 : Simulated test results with T=85°C and H=90% 
 Time to failure (in days) and censored time in bold

System 1 6.87 7.98 9.28 10.00 
System 2 1.34 10.00   
System 3 1.25 6.00 10.00  
System 4 10.00    
System 5 10.00    
 
The Weibull parameters η2 and β2 are estimated by the 
relationships [9] and [10] : 

β2 = 1.14 (instead of 1.5) 
η2 = 8.52 days (instead of 10.12 days estimated by [19]) 
 

Table 5 : Simulated test results with T=85°C and H=95% 
 Time to failure (in days) and censored time in bold 

System 1 4.99 8.67 10.00   
System 2 9.15 10.00    
System 3 5.86 5.90 8.06 8.20 10.00 
System 4 0.88 2.28 9.00 10.00  
System 5 10.00     

 
The Weibull parameters η3 and β3 are estimated by the 
relationships [9] and [10] : 

β3 = 1.56 (instead of 1.5) 
η3 = 6.41 days(instead of 7.24 days estimated by [19]) 

In order to evaluate the activation energy, the ratio of η 
defined for the test 1 and 2 can be evaluated : 
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Thus Ea = 0.44 eV (instead of 0.51 eV)   To evaluate m, the 
ratio of the η defined in test 2 and 3 can be calculated : 
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Thus m = 5.26 (instead of 6.2) 
And, to close with, A can be evaluated from the first test : 
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Thus A = 1.19* 105 days (instead of 8.75*105) 
It can be noted that the estimators values are close to initial 
data. 
 

4.  CONCLUSION 

 
In our work, we have defined two accelerated life models for 
repairable systems (Arrhenius-exponential model and Peck-
Weibull model). Thus, we show that is possible to estimate the 
reliability of a product during its development (with a small 
number of prototypes using accelerated life tests and repairing 
when a failure occurs). This method is able to improve the 
accuracy in the estimation of reliability parameters (accuracy 
is linked to the number of failure times which are available). 
Nevertheless, these models assume “minimal repairing” such 
that there is no impact on the failure rate. Future work will be 
focused on the study of the impact of repair on the failure rate. 
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